Junior-Prof. Dr. Z. Kabluchko Judith Schmidt

Summer term 2012 11th May 2012

Risk Theory

Exercise Sheet 4 Due to: 25th May 2012

Exercise 1 (6 points)

Let X be a random variable with finite Laplace transform. The cumulants $\kappa_n(X)$ of X are defined by

$$\kappa_n(X) = \frac{d^n}{dt^n} \log(\mathbb{E}(e^{tX}))|_{t=0}$$

- (a) Show that $\kappa_1(X) = \mathbb{E}[X], \kappa_2(X) = \operatorname{Var}(X), \kappa_3(X) = \mathbb{E}[(X \mathbb{E}[X])^3].$
- (b) Show that if X, Y are independent random variables, then $\kappa_n(X+Y) = \kappa_n(X) + \kappa_n(Y)$.
- (c) Calculate the cumulants of the Poisson distribution with parameter λ and the normal distribution with parameters μ, σ^2 .

Hint: You may interchange the derivative and the expectation sign without justifying it.

Exercise 2 (6 points)

Suppose that the number of claims is a mixed Poisson variable with mean 10000 and standard deviation 1000. Find the standard deviation of the mixing variable.

Exercise 3 (6 points)

The Laplace transform (or moment-generating function) L_X of a random variable X is given by $L_X(t) = \mathbb{E}[e^{tX}]$ for all $t \in \mathbb{R}$ for which the expected value exists. The generating function g_N of a random variable $N : \Omega \to \mathbb{N}_0$ is given by $g_N(s) = \mathbb{E}[s^N]$, for $|s| \leq 1$.

- (a) Let $X \sim \text{Exp}(\lambda)$, with $\lambda > 0$. Compute L_X .
- (b) Let $N \sim \widetilde{\text{NB}}(\gamma, p)$ for some $\gamma > 0, p \in (0, 1)$. Show by using generating functions that $\mathbb{E}[N] = \gamma \frac{1-p}{p}$ and $\operatorname{Var}(N) = \gamma \frac{1-p}{p^2}$.

Exercise 4 (6 points)

Let $X = \sum_{i=1}^{N} U_i$ be a compound Poisson random variable with $\mathbb{E}[U_i^2] < \infty$ and $N \sim \text{Poi}(\lambda)$. Prove the following central limit theorem: for $\lambda \to \infty$

$$\frac{X - \mathbb{E}[X]}{\sqrt{\operatorname{Var}\left(X\right)}} \stackrel{d}{\to} Y \sim N(0, 1)$$

Hint: Compute the characteristic function of the left-hand side and take the limit $\lambda \to \infty$.

Exercise 5 (6 points)

Consider a collective model with the number of claims $N \sim \text{Poi}(\lambda)$ and the claim size X_1 having a logarithmic distribution with parameter $p \in (0, 1)$, that is

$$\mathbb{P}(X_1 = n) = -\frac{1}{\log(1-p)} \frac{p^n}{n}, n \in \mathbb{N}$$

Show that the total claim amount $S = X_1 + ... + X_N$ satisfies $S \sim \widetilde{\text{NB}}\left(-\frac{\lambda}{\log(1-p)}, 1-p\right)$.

Exercise 6 (6 points)

(a) Let X be a $G(\alpha, \lambda)$ -distributed random variable. Prove that

$$\frac{X - \mathbb{E}[X]}{\sqrt{\operatorname{Var}(X)}} \stackrel{d}{\to} Y \sim N(0, 1)$$

as $\alpha \to \infty$ and λ stays constant.

Hint: Compute the characteristic function of the left-hand side.

(b) Let X_n be a random variable with G(cn, 1)-distribution, where c > 0 is constant. Show that $\frac{X_n}{n}$ converges, as $n \to \infty$, in distribution towards a random variable which takes value c with probability one.

Hint: Compute the limit of $\varphi_{X_n/n}(t)$, as $n \to \infty$.

Exercise 7 (6 points)

A positive random variable X has inverse Gaussian distribution with parameter $\mu, \lambda > 0$, denoted by $X \sim IG(\mu, \lambda)$, if the density function is given by

$$f_X(x) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left(-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right), \ x > 0.$$

Show that the distribution function of X is

$$F_X(x) = \Phi\left(\frac{\sqrt{\lambda}}{\sqrt{x}} \left(\frac{x}{\mu} - 1\right)\right) + \exp\left(\frac{2\lambda}{\mu}\right) \Phi\left(-\frac{\sqrt{\lambda}}{\sqrt{x}} \left(\frac{x}{\mu} + 1\right)\right), \ x > 0.$$

Hint: It is not necessary to integrate.