Junior-Prof. Dr. Z. Kabluchko Judith Schmidt

Summer term 2012 22th June 2012

Risk Theory

Exercise Sheet 9 Due to: 29th June 2012

Exercise 1 (6 points)

Consider the stop-loss reinsurance, that is $X = X_S + X_R$, where $X_S = \min\{X, M\}$ is the insured part and $X_R = \max\{X - M, 0\}$ is the reinsured part, for M > 0 constant. Let X be exponentially distributed with parameter $\lambda > 0$.

- (a) Compute $\mathbb{E}[X_S]$ and Var (X_S) .
- (b) Compute $\mathbb{E}[X_R]$ and $\operatorname{Var}(X_R)$.

Exercise 2 (6 points)

Assume there is an algorithm simulating a random variable $U \sim U[0, 1]$ with density function $f_U(t) = \mathbb{1}_{[0,1]}(t)$.

- (a) Describe an algorithm generating a Pareto-distributed random variable with parameters $\alpha > 0$ and c > 0. The density of such random variable is given by $\frac{\alpha}{c} \left(\frac{c}{t}\right)^{\alpha+1}$ for $t \ge c$ and 0 otherwise.
- (b) Describe an algorithm generating a Weibull-distributed random variable with parameters r > 0 and c > 0. The density of such random variable is given by $rct^{r-1}e^{-ct^r}$ for $t \ge 0$ and 0 otherwise.

Exercise 3 (6 points)

Consider the following run-off triangle for cumulative claim amounts (claim sums) C_{ik} :

	Cumulative claim amounts C_{ik} in run-off year k					
Occurrence year	k=0	1	2	3		
2003(=0) 2004(=1) 2005(=2) 2006(=3)	10000 15000 20000 20000	25000 45000 55000	45000 60000	65000		

Suppose that all claims are settled completely within 4 years. Use the Chain-Ladder Method to

- (a) estimate the expected reserve needed to cover claims with the occurrence year 2004.
- (b) estimate the expected amount to be paid in 2007 and 2008 for claims dating from the occurrence year 2005.

Exercise 4 (9 points)

For a portfolio of risks the premiums π_i and the current claim sums C_{ik} are known for the years of occurence 2004 until 2007. Furthermore, there are a-priori estimators α_i for the expected end claim amounts (Endschadenstände) and a-priori estimators γ_k for in the run-off pattern for the quotas. It is assumed that all claims are settled until the end of the third year of occurence.

Occurrence year	Cumulative claim amounts C_{ik} in run-off year k			premium	a priori end claim amount	
	k=0	1	2	3	π_i	α_i
2004				561	660	600
2005			486		675	650
2006		441			750	700
2007	294				870	750
Quotas γ_k	0.5	0.7	0.9	1.0		

Estimate the reserve for the year for the claims to be paid in 2009 with the

- (a) Bornhuetter-Ferguson method.
- (b) Loss-Development method.
- (c) Cape-Cod method.