Stochastic networks II

Problem set 10

Due date: July 17, 2012

Exercise 1

Let $X \subset \mathbb{R}^{2}$ be a homogeneous Poisson process with intensity λ. For $k \geq 1$ denote by $\widetilde{G}(X, k)$ the directed graph with vertex set X and where an edge is drawn from x to y if y is one of the k nearest neighbors of x in X. Furthermore denote by $G(X, k)$ the (undirected) graph where an edge is drawn between x and y if there exists a directed edge from x to y in $\widetilde{G}(X, k)$ or if there exists a directed edge from y to x in $\widetilde{G}(X, k)$. Derive integral expressions for the following characteristics and explicitly compute the occurring integrals for $k=1$.
(a) the expected number of edges pointing to the origin in the graph $\widetilde{G}(X \cup\{o\}, k)$
(b) the expected degree of o in $G(X \cup\{o\}, k)$
(c) $\mathbb{E}\left(\nu_{1}\left(|G(X, k)| \cap[0,1]^{2}\right)\right)$, where $|G(X, k)| \subset \mathbb{R}^{2}$ denotes the union of all edges in $G(X, k)$.

Hint. Use the Slivnyak-Mecke formula.

Exercise 2

Let $X \subset \mathbb{R}^{2}$ be a homogeneous Poisson process with intensity λ. For $A, B \subset \mathbb{R}^{2}$ write $A+B=$ $\{a+b: a \in A, b \in B\}$. Denote $B_{1}(o) \subset \mathbb{R}^{2}$ the unit disk in \mathbb{R}^{2} and by $G^{(1)}(X)$ the graph with vertex set X and where an edge is drawn from x to y if $X\left([x, y] \oplus B_{1}(o)\right)=2$. Compute the following characteristics.
(a) the expected degree of o in $G^{(1)}(X \cup\{o\})$
(b) $\mathbb{E}\left(\nu_{1}\left(\left|G^{(1)}(X)\right| \cap[0,1]^{2}\right)\right)$, where $\left|G^{(1)}(X)\right| \subset \mathbb{R}^{2}$ denotes the union of all edges in $G^{(1)}(X)$.

Hint. Use the Slivnyak-Mecke formula.

