Stochastic networks II

Problem set 2

Due date: May 8, 2012

Exercise 1

Let $X=\left\{S_{n}\right\}_{n \geq 1} \subset \mathbb{R}^{2}$ be a homogeneous Poisson point process with intensity 1 and for $k \geq 1$ let $Q_{1}^{(k)}, \ldots, Q_{k^{2}}^{(k)}$ be a subdivision of $[0,1]^{2}$ into congruent squares of side length $1 / k$. For $r>0$ write $G(X, r)=\left(X, E_{r}\right)$ for the geometric graph with vertex set X and edge set $E_{r}=\left\{\left\{v, v^{\prime}\right\} \subset X: 0<\left|v-v^{\prime}\right| \leq r\right\}$. Furthermore write $X_{k}=\sum_{i=1}^{k^{2}} X_{i}^{(k)}$, where for $1 \leq i \leq k^{2}$ we denote by $X_{i}^{(k)}$ the indicator function of the event that precisely one point of $X \cap Q_{i}^{(k)}$ is contained in an infinite connected component of $G(X, r)$.
(a) Prove $X_{k} \leq X_{k+1}$ for each $k \geq 1$.
(b) Prove $\lim _{k \rightarrow \infty} X_{k}=N_{r}\left([0,1]^{2}\right)$, where $N_{r}\left([0,1]^{2}\right)$ denotes the number of points of $X \cap[0,1]^{2}$ that are contained in an infinite connected component of $G(X, r)$.

Exercise 2

Let $X \subset \mathbb{R}^{2}$ be a homogeneous Poisson point process with intensity 1 . Write $r_{c}=\inf \{r: \theta(r)>$ $0\}$ and for every $\alpha \in(0,1)$ write $r_{\alpha}=\inf \{r: \theta(r)>\alpha\}$.
(a) Let $r>0$ be arbitrary. Prove $\theta(r)=\lim _{n \rightarrow \infty} \mathbb{P}\left(C_{o}^{(r)} \not \subset[-n / 2, n / 2]^{2}\right)$, where $C_{o}^{(r)}$ denotes the connected component of $G(X \cup\{o\}, r)$ containing o.
(b) Show that the function $\theta:(0, \infty) \rightarrow[0,1], r \mapsto \theta(r)$ is continuous from the right.
(c) Conclude $r_{c}<r_{\alpha}$ for every $\alpha>0$.
(d) Prove $r_{\alpha}<\infty$ for all $\alpha \in(0,1)$.
 exercise 3.

Exercise 3

Let $X \subset \mathbb{R}^{2}$ be a homogeneous Poisson point process with intensity 1. For $r>0$ denote by $X_{r}^{(\infty)} \subset X$ the points of X that are contained in an infinite connected component of $G(X, r)$ and for $A \subset \mathbb{R}^{2}$ bounded Borel write $N_{r}(A)=\#\left(X_{r}^{(\infty)} \cap A\right)$. For $k \geq 1, \delta>0$ write $B_{\delta, k}=$ $[-\sqrt{\delta k} / 2, \sqrt{\delta k} / 2]^{2}$.
(a) Prove $\int_{B_{\delta, k}} N_{r}\left(x+[0,1]^{2}\right) d x=\sum_{X_{n} \in X_{r}^{(\infty)}} \nu_{2}\left(\left(X_{n}+[-1,0]^{2}\right) \cap B_{\delta, k}\right)$, where ν_{2} denotes two-dimensional Lebesgue measure.
(b) Prove

$$
\lim _{k \rightarrow \infty} \frac{1}{\delta k} \sum_{X_{n} \in X_{r}^{(\infty)}} 1_{\left(X_{n}+[-1,0]^{2}\right) \cap B_{\delta, k} \neq \emptyset} \text { and }\left(X_{n}+[-1,0]^{2}\right) \not \subset B_{\delta, k}=0 \text { a.s. }
$$

(c) Conclude

$$
\lim _{k \rightarrow \infty} \frac{N_{r}\left(B_{\delta, k}\right)}{\delta k}=\lim _{k \rightarrow \infty} \frac{\int_{B_{\delta, k}} N_{r}\left(x+[0,1]^{2}\right) d x}{\delta k}=\mathbb{E}\left(N_{r}\left([0,1]^{2}\right)\right) \text { a.s. }
$$

Hint. Use the Borel-Cantelli Lemma for part (b) and ergodic theory for the second equation in part (c).

Exercise 4 *

Let $X, X_{r}^{(\infty)}, N_{r}$ and $B_{\delta, k}$ be as in problem 3. The goal of the present problem is to show

$$
\lim _{k \rightarrow \infty} \frac{1}{(\delta k)^{2}} \operatorname{Var} N_{r}\left(B_{\delta, k}\right)=0
$$

(a) For $A \subset \mathbb{R}^{2}$ Borel write $N_{r}^{\prime}(A)=X(A)-N_{r}(A)$. Reduce the problem to proving

$$
\lim _{k \rightarrow \infty} \frac{1}{(\delta k)^{2}} \operatorname{Var} N_{r}^{\prime}\left(B_{\delta, k}\right)=0
$$

(b) Subdivide $B_{\delta, k}$ into $M_{k}=\lceil 2 \sqrt{\delta k} / r\rceil^{2}$ squares $Q_{1}, \ldots, Q_{M_{k}}$ of side length $\in(r / 4, r / 2)$. Prove

$$
\operatorname{Var}\left(N_{r}^{\prime}\left(B_{\delta, k}\right)\right)=\sum_{1 \leq i, j \leq M_{k}} \operatorname{Cov}\left(N_{r}^{\prime}\left(Q_{i}\right), N_{r}^{\prime}\left(Q_{j}\right)\right)
$$

(c) Prove that

$$
\left|\sum_{1 \leq i \leq M_{k}} \sum_{\substack{1 \leq j \leq M_{k} \\ d\left(Q_{i}, Q_{j}\right) \leq k^{1 / 3}}} \operatorname{Cov}\left(N_{r}^{\prime}\left(Q_{i}\right), N_{r}^{\prime}\left(Q_{j}\right)\right)\right| \leq k^{7 / 4}
$$

holds for all sufficiently large $k \geq 1$, where we write $d\left(Q_{i}, Q_{j}\right)=\inf \left\{d(x, y): x \in Q_{i}, y \in\right.$ $\left.Q_{j}\right\}$.
(d) Prove that for all $1 \leq i, j \leq M_{k}$ we have

$$
\operatorname{Cov}\left(N_{r}^{\prime}\left(Q_{i}\right), N_{r}^{\prime}\left(Q_{j}\right)\right)=\operatorname{Cov}\left(N_{r}^{\prime}\left(Q_{i}\right) 1_{\left|C_{i}\right|<\infty}, N_{r}^{\prime}\left(Q_{j}\right) 1_{\left|C_{j}\right|<\infty}\right),
$$

where C_{i} denotes the union of all connected components of $G(X, r)$ that contain a point from Q_{i}.
(e) Prove that

$$
\left|\operatorname{Cov}\left(N_{r}^{\prime}\left(Q_{i}\right) 1_{C_{i} \not \subset Q_{i} \oplus\left[-k^{1 / 4}, k^{1 / 4}\right]} 1_{\left|C_{i}\right|<\infty}, N_{r}^{\prime}\left(Q_{j}\right)\right)\right| \leq \exp \left(-k^{1 / 5}\right)
$$

for all sufficiently large k (use the hint and Cauchy-Schwarz inequality)
(f) Prove the existence of $k_{0} \geq 1$ such that

$$
\operatorname{Cov}\left(N_{r}^{\prime}\left(Q_{i}\right) 1_{C_{i} \subset Q_{i} \oplus\left[-k^{1 / 4}, k^{1 / 4}\right]}, N_{r}^{\prime}\left(Q_{j}\right) 1_{C_{j} \subset Q_{j} \oplus\left[-k^{1 / 4}, k^{1 / 4}\right]}\right)=0,
$$

holds for all $k \geq k_{0}$ and all $1 \leq i, j \leq M_{k}$ with $d\left(Q_{i}, Q_{j}\right)>k^{1 / 3}$.
(g) Conclude

$$
\lim _{k \rightarrow \infty} \frac{1}{(\delta k)^{2}} \operatorname{Var} N_{r}^{\prime}\left(B_{\delta, k}\right)=0
$$

Hint. You may use the following result without proof. Let $r>r_{c}$ and let $A \subset \mathbb{R}^{2}$ be a bounded $\overline{B o r e l}$ set. Then there exists $c>0$ such that for all sufficiently large $k \geq 1$ we have

$$
\mathbb{P}\left(\operatorname{diam}\left(C_{A}\right) \geq k,\left|C_{A}\right|<\infty\right) \leq \exp (-c k)
$$

where C_{A} denotes the union of the connected components of $G(X, r)$ containing a point from A and where $\operatorname{diam}\left(C_{A}\right)=\sup \left\{d(x, y): x, y \in C_{A}\right\}$.

