Stochastic networks II

Problem set 3

Due date: May 15, 2012

Exercise 1

Let $X \subset \mathbb{R}^{2}$ be a homogeneous Poisson point process with intensity 1. For $r>0$ write $G(X \cup\{o\}, r)=\left(X \cup\{o\}, E_{r}\right)$ for the geometric graph with vertex set $X \cup\{o\}$ and edge set $E_{r}=\left\{\left\{v, v^{\prime}\right\} \subset X \cup\{o\}: 0<\left|v-v^{\prime}\right| \leq r\right\}$. Write $r_{c}=\inf \{r: \theta(r)>0\}$.
(a) Show that for $r<r_{c}$ with probability 1 all connected components of the graph $G(X \cup$ $\{o\}, r)$ are finite.
(b) Show that for $r>r_{c}$ with probability 1 there exists an infinite connected component of the graph $G(X \cup\{o\}, r)$.

Hint. Use ergodic theory.

Exercise 2

Let $X, G(X \cup\{o\}, r)$ and r_{c} be as in exercise 1 .
(a) show that for all $r, r^{\prime} \geq 0$ with $r_{c}<r<r^{\prime}$ we have

$$
\mathbb{P}\left(\left|C_{o}^{\left(r^{\prime}\right)}\right|=\infty,\left|C_{o}^{(r)}\right|<\infty\right)>0
$$

(b) conclude that the function $\theta:[0, \infty) \rightarrow[0,1]$ is strictly increasing on the interval $\left(r_{c}, \infty\right)$.

Exercise 3

Let X be as in exercise 1 and let $\left(A_{k}\right)_{k \geq 1}$ be an arbitrary sequence of bounded Borel sets of \mathbb{R}^{2} with $\nu_{2}\left(A_{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$. Show the stochastic convergence $X\left(A_{k}\right) / \nu_{2}\left(A_{k}\right) \rightarrow 1$.

Exercise 4

For $r>0$ let us consider the random site process $\left\{Y_{z}\right\}_{z \in \mathbb{Z}^{2}}$ defined by $Y_{z}(\omega)=1_{X \cap\left(r / 4 \cdot\left(z+[0,1]^{2}\right)\right)=\emptyset}(\omega)$. We say that z is activated if $Y_{z}=1$. Furthermore for $z \in \mathbb{Z}^{2}$ write C_{z} for the connected component of activated sites of \mathbb{Z}^{2} containing z (here we mean connectedness using the 8neighborhood).
(a) Show that there exist $c, r_{0}>0$ such that $\mathbb{P}\left(\left|C_{z}\right|>n\right) \leq 2 \exp (-c n)$ holds for all $n \geq 1$ and all $r \geq r_{0}$.
(b) Let $k, \ell \geq 1$ be arbitrary. Show that for $r \geq r_{0}$ the probability for the existence of an activated vertical crossing of the discrete rectangle $R=([0, k n] \times[0, \ell n]) \cap \mathbb{Z}^{2}$ tends to 0 as $n \rightarrow \infty$. Here we say R has an activated vertical crossing if there exists an activated path in R whose starting point is contained in $([0, k n] \times\{0\}) \cap \mathbb{Z}^{2}$ and whose end point is contained in $([0, k n] \times\{\ell n\}) \cap \mathbb{Z}^{2}$.
(c) Conclude that for all $k, \ell \geq 2$ and all $r \geq r_{0}$ the probability that $G(X, r)$ defines a horizontal crossing of the rectangle $[0,(k-1) n r / 4] \times[0,(\ell+1) n r / 4]$ tends to 1 as $n \rightarrow \infty$.

