Stochastic networks II

Problem set 6

Due date: June 12, 2012

Exercise 1

Let $r>0$ and let $X \subset \mathbb{R}^{2}$ be a homogeneous Poisson point process with intensity 1 . Write $N \in \mathbb{Z}^{+} \cup\{\infty\}$ for the (random) number of infinite connected components of the graph $G(X, r)$.
(a) show that N is a.s. constant, i.e. there exists $n \in \mathbb{Z}^{+} \cup\{\infty\}$ such that $\mathbb{P}(N=n)=1$.
(b) show that if $\mathbb{P}(N<\infty)=1$, then there exists $k>0$ such that the probability that the square $[-k, k]^{2}$ intersects all infinite connected components is positive.
(c) show that if $\mathbb{P}(N<\infty)=1$ and $r>r_{c}$, then $\mathbb{P}(N=1)>0$.
(d) conclude that N is a.s. equal to one of the values 0,1 or ∞.

Hint. Use the ergodicity of X for part (a).

Exercise 2

Let X be a homogeneous Poisson point process with intensity 1 and write $(\mathbb{N}, \mathcal{N}, \mathbb{P})$ for its canonical probability space. Furthermore $f: \mathbb{N} \rightarrow[0, \infty)$ is said to be increasing if for any $\varphi, \varphi^{\prime} \in \mathbb{N}$ with $\varphi \subset \varphi^{\prime}$ we have $f(\varphi) \leq f\left(\varphi^{\prime}\right)$. Denote by \mathcal{F}_{n} the σ-algebra generated by the random variables $\left\{1_{\left.\left.X\left(3^{-n} z+\right]-3^{-n} / 2,3^{-n} / 2\right]^{2}\right) \geq 1}\right\}_{z \in \mathbb{Z}^{2} \cap\left[-3^{n} n, 3^{n} n\right]^{2}}$.
(a) show that the $\left(\mathcal{F}_{n}\right)_{n \geq 1}$ form a filtration with $\sigma\left(\bigcup_{n=1}^{\infty} \mathcal{F}_{n}\right)=\mathcal{N}$.
(b) if $f: \mathbb{N} \rightarrow[0, \infty)$ is an increasing function, show that $\mathbb{E}\left(f \mid \mathcal{F}_{k}\right)$ defines an increasing function on the discrete product space $\{0,1\}^{\left\{\mathbb{Z}^{2} \cap\left[-3^{n} n, 3^{n} n\right]^{2}\right\}}$.
(c) prove that if $f_{1}, f_{2}: \mathbb{N} \rightarrow[0, \infty)$ are increasing, then $\mathbb{E}\left(\mathbb{E}\left(f_{1} \mid \mathcal{F}_{k}\right) \mathbb{E}\left(f_{2} \mid \mathcal{F}_{k}\right)\right) \geq \mathbb{E}\left(f_{1}\right) \mathbb{E}\left(f_{2}\right)$.
(d) using the martingale convergence theorem conclude that $\mathbb{E}\left(f_{1} f_{2}\right) \geq \mathbb{E}\left(f_{1}\right) \mathbb{E}\left(f_{2}\right)$.

Hint. Use Lemma 2.5 from the lecture notes for part (c).

Exercise 3

Let X be a homogeneous Poisson point process with intensity 1 and let $r>r_{c}$.
(a) show that there exists $c>0$ such that for all $n \geq 1$ the probability $G(X, r)$ contains a closed curve inside $\left[-3^{n+1} / 2,3^{n+1} / 2\right]^{2}$ surrounding $\left[-3^{n} / 2,3^{n} / 2\right]^{2}$ is bounded from below by c.
(b) show that the event of part (a) occurs a.s. for infinitely many values of n.
(c) conclude that $G(X, r)$ contains a.s. exactly 1 infinite cluster.

Hint. Use Theorem 3.15 from the lecture notes and Exercise 2 for part (a).

