Stochastic networks II

Problem set 6

Due date: June 12, 2012

Exercise 1

Let r > 0 and let $X \subset \mathbb{R}^2$ be a homogeneous Poisson point process with intensity 1. Write $N \in \mathbb{Z}^+ \cup \{\infty\}$ for the (random) number of infinite connected components of the graph G(X, r).

- (a) show that N is a.s. constant, i.e. there exists $n \in \mathbb{Z}^+ \cup \{\infty\}$ such that $\mathbb{P}(N=n) = 1$.
- (b) show that if $\mathbb{P}(N < \infty) = 1$, then there exists k > 0 such that the probability that the square $[-k, k]^2$ intersects all infinite connected components is positive.
- (c) show that if $\mathbb{P}(N < \infty) = 1$ and $r > r_c$, then $\mathbb{P}(N = 1) > 0$.
- (d) conclude that N is a.s. equal to one of the values 0, 1 or ∞ .

Hint. Use the ergodicity of X for part (a).

Exercise 2

Let X be a homogeneous Poisson point process with intensity 1 and write $(\mathbb{N}, \mathcal{N}, \mathbb{P})$ for its canonical probability space. Furthermore $f : \mathbb{N} \to [0, \infty)$ is said to be increasing if for any $\varphi, \varphi' \in \mathbb{N}$ with $\varphi \subset \varphi'$ we have $f(\varphi) \leq f(\varphi')$. Denote by \mathcal{F}_n the σ -algebra generated by the random variables $\left\{ 1_{X(3^{-n}z+]-3^{-n}/2,3^{-n}/2]^2} \right\}_{z \in \mathbb{Z}^2 \cap [-3^n n,3^n n]^2}$.

- (a) show that the $(\mathcal{F}_n)_{n>1}$ form a filtration with $\sigma(\bigcup_{n=1}^{\infty} \mathcal{F}_n) = \mathcal{N}$.
- (b) if $f : \mathbb{N} \to [0, \infty)$ is an increasing function, show that $\mathbb{E}(f \mid \mathcal{F}_k)$ defines an increasing function on the discrete product space $\{0, 1\}^{\{\mathbb{Z}^2 \cap [-3^n n, 3^n n]^2\}}$.
- (c) prove that if $f_1, f_2 : \mathbb{N} \to [0, \infty)$ are increasing, then $\mathbb{E} \left(\mathbb{E} \left(f_1 \mid \mathcal{F}_k \right) \mathbb{E} \left(f_2 \mid \mathcal{F}_k \right) \right) \ge \mathbb{E} \left(f_1 \right) \mathbb{E} \left(f_2 \right)$.
- (d) using the martingale convergence theorem conclude that $\mathbb{E}(f_1 f_2) \geq \mathbb{E}(f_1) \mathbb{E}(f_2)$.

Hint. Use Lemma 2.5 from the lecture notes for part (c).

Exercise 3

Let X be a homogeneous Poisson point process with intensity 1 and let $r > r_c$.

(a) show that there exists c > 0 such that for all $n \ge 1$ the probability G(X, r) contains a closed curve inside $[-3^{n+1}/2, 3^{n+1}/2]^2$ surrounding $[-3^n/2, 3^n/2]^2$ is bounded from below by c.

- (b) show that the event of part (a) occurs a.s. for infinitely many values of n.
- (c) conclude that G(X, r) contains a.s. exactly 1 infinite cluster.
- *Hint.* Use Theorem 3.15 from the lecture notes and Exercise 2 for part (a).