Stochastic networks II

Problem set 7

Due date: June 19, 2012

Exercise 1

Let $r>0$, let $k \geq 1$ and let $X \subset \mathbb{R}^{2}$ be a homogeneous Poisson point process with intensity 1 . For $s>0$ write $B_{s}=[-\sqrt{s} / 2, \sqrt{s} / 2]^{2}$ and denote by M_{s} the number of points $X_{i} \in X \cap B_{s}$ such that the connected component of $G(X, r)$ containing X_{i} consists of exactly k vertices. Similarly write \widetilde{M}_{s} for the number of points $X_{i} \in X \cap B_{s}$ such that the connected component of $G(X, r)$ containing X_{i} consists of exactly k vertices and such that additionally X_{i} is the vertex with smallest x-coordinate in this component. Finally denote by $p_{k}(r)$ resp. $\widetilde{p_{k}}(r)$ the probabilities that the connected component C_{o} of $G(X \cup\{o\}, r)$ containing the origin o consists of exactly k vertices, respectively that $\left|C_{o}\right|=k$ and additionally the origin o is the vertex with smallest x-coordinate in this component.
(a) Prove that $\left|M_{s}-k \widetilde{M}_{s}\right| \leq X\left(B_{(\sqrt{s}+k r)^{2}} \backslash B_{(\sqrt{s}-k r)^{2}}\right)$ and conclude $s^{-1} \mathbb{E}\left|M_{s}-k \widetilde{M}_{s}\right| \rightarrow 0$
as $s \rightarrow \infty$. as $s \rightarrow \infty$.
(b) Show that $\mathbb{E} M_{s}=s p_{k}(r)$ and $\mathbb{E}\left(\widetilde{M}_{s}\right)=s \widetilde{p_{k}}(r)$.
(c) Conclude $p_{k}(\lambda)=k \widetilde{p_{k}}(\lambda)$.

Exercise 2

Let $X \subset \mathbb{R}^{2}, k \geq 1, r>0, \widetilde{p_{k}}(r)$ and $p_{k}(r)$ be as in Problem 1. Furthermore write $B=B_{r(k+3)}(o)$ for the ball of radius $r(k+3)$ centered at the origin and for $\psi \subset \varphi \subset \mathbb{R}^{2}$ finite write $g(\psi, \varphi)$ for the indicator function of the event that $G(\psi \cup\{o\}, r)$ forms a connected component of $G(\varphi \cup\{o\}, r)$ consisting of exactly $k+1$ vertices and such that the origin is the vertex with the smallest x-coordinate in this component.
(a) Let $Y=\left\{Y_{1}, \ldots, Y_{k}\right\}$ be a set of iid random vectors distributed uniformly in B. Prove

$$
\widetilde{p_{k+1}}(r)=\frac{\left(\pi(k+3)^{2} r^{2}\right)^{k}}{k!} \mathbb{E} g(Y, Y \cup(X \cap B)) .
$$

(b) Write $\widetilde{h}\left(x_{1}, \ldots, x_{k}\right)$ for the indicator function of the event that $G\left(\left\{o, x_{1}, \ldots, x_{k}\right\}, 1\right)$ is connected and that the origin is the vertex with the smallest x-coordinate. Furthermore write

$$
A\left(o, x_{1}, \ldots, x_{k}\right)=\nu_{2}\left(B_{r}(o) \cup \bigcup_{i=1}^{k} B_{r}\left(x_{i}\right)\right) .
$$

Using this notation, prove that

$$
\widetilde{p_{k+1}}(r)=\frac{1}{k!} \int_{B} \ldots \int_{B} \widetilde{h}\left(x_{1}, \ldots, x_{k}\right) \exp \left(-A\left(o, x_{1}, \ldots, x_{k}\right)\right) d x_{1} \cdots d x_{k}
$$

(c) Finally write $h\left(x_{1}, \ldots, x_{k}\right)=\widetilde{h}\left(x_{1}, \ldots, x_{k}\right) \cdot 1_{\pi_{1}(o)<\pi_{1}\left(x_{1}\right)<\ldots<\pi_{1}\left(x_{k}\right)}$, where $\pi_{1}\left(x_{i}\right)$ denotes the first coordinate of x_{i}. Prove that

$$
p_{k+1}(r)=(k+1) \int_{B} \ldots \int_{B} h\left(o, x_{1}, \ldots, x_{k}\right) \exp \left(-A\left(o, x_{1}, \ldots, x_{k}\right)\right) d x_{1} \cdots d x_{k}
$$

Exercise 3

Let $\varphi \subset \mathbb{R}^{d}$ be finite and with the property that for all $x_{1}, x_{2}, y_{1}, y_{2} \in \varphi$ with $x_{1} \neq x_{2}, y_{1} \neq y_{2}$ and $\left\{x_{1}, x_{2}\right\} \neq\left\{y_{1}, y_{2}\right\}$ we have $\left|x_{1}-x_{2}\right| \neq\left|y_{1}-y_{2}\right|$. Define a graph G_{1} on the vertex set φ by drawing an edge between x and y if and only if there do not exist $x=x_{0}, x_{1}, \ldots, x_{n}=y$ such that $|x-y|>\left|x_{i}-x_{i+1}\right|$ holds for all $0 \leq i \leq n-1$. Furthermore define a graph G_{2} on the vertex W by drawing an edge between x and y if and only if there exist $W \subset \varphi$ such that $|\{x, y\} \cap W|=1$ and $|x-y| \leq\left|x^{\prime}-y^{\prime}\right|$ for all $x^{\prime} \in W$ and $y^{\prime} \in \varphi \backslash W$.
(a) Prove $G_{1}=\operatorname{MST}(\varphi)$.
(b) Prove $G_{2}=\operatorname{MST}(\varphi)$.

