Stochastic networks II

Problem set 7

Due date: June 19, 2012

Exercise 1

Let r > 0, let $k \ge 1$ and let $X \subset \mathbb{R}^2$ be a homogeneous Poisson point process with intensity 1. For s > 0 write $B_s = [-\sqrt{s}/2, \sqrt{s}/2]^2$ and denote by M_s the number of points $X_i \in X \cap B_s$ such that the connected component of G(X, r) containing X_i consists of exactly k vertices. Similarly write \widetilde{M}_s for the number of points $X_i \in X \cap B_s$ such that the connected component of G(X, r) containing X_i consists of exactly k vertices and such that additionally X_i is the vertex with smallest x-coordinate in this component. Finally denote by $p_k(r)$ resp. $\widetilde{p}_k(r)$ the probabilities that the connected component C_o of $G(X \cup \{o\}, r)$ containing the origin o consists of exactly k vertices, respectively that $|C_o| = k$ and additionally the origin o is the vertex with smallest x-coordinate in this component.

- (a) Prove that $\left|M_s k\widetilde{M}_s\right| \leq X \left(B_{(\sqrt{s}+kr)^2} \setminus B_{(\sqrt{s}-kr)^2}\right)$ and conclude $s^{-1}\mathbb{E}\left|M_s k\widetilde{M}_s\right| \to 0$ as $s \to \infty$.
- (b) Show that $\mathbb{E}M_s = sp_k(r)$ and $\mathbb{E}(\widetilde{M}_s) = s\widetilde{p_k}(r)$.
- (c) Conclude $p_k(\lambda) = k \widetilde{p}_k(\lambda)$.

Exercise 2

Let $X \subset \mathbb{R}^2$, $k \ge 1$, r > 0, $\tilde{p}_k(r)$ and $p_k(r)$ be as in Problem 1. Furthermore write $B = B_{r(k+3)}(o)$ for the ball of radius r(k+3) centered at the origin and for $\psi \subset \varphi \subset \mathbb{R}^2$ finite write $g(\psi, \varphi)$ for the indicator function of the event that $G(\psi \cup \{o\}, r)$ forms a connected component of $G(\varphi \cup \{o\}, r)$ consisting of exactly k+1 vertices and such that the origin is the vertex with the smallest x-coordinate in this component.

(a) Let $Y = \{Y_1, \ldots, Y_k\}$ be a set of iid random vectors distributed uniformly in B. Prove

$$\widetilde{p_{k+1}}(r) = \frac{\left(\pi(k+3)^2 r^2\right)^k}{k!} \mathbb{E}g(Y, Y \cup (X \cap B)).$$

(b) Write $\tilde{h}(x_1, \ldots, x_k)$ for the indicator function of the event that $G(\{o, x_1, \ldots, x_k\}, 1)$ is connected and that the origin is the vertex with the smallest x-coordinate. Furthermore write

$$A(o, x_1, \dots, x_k) = \nu_2 \left(B_r(o) \cup \bigcup_{i=1}^k B_r(x_i) \right).$$

Using this notation, prove that

$$\widetilde{p_{k+1}}(r) = \frac{1}{k!} \int_B \dots \int_B \widetilde{h}(x_1, \dots, x_k) \exp(-A(o, x_1, \dots, x_k)) dx_1 \cdots dx_k$$

(c) Finally write $h(x_1, \ldots, x_k) = \tilde{h}(x_1, \ldots, x_k) \cdot 1_{\pi_1(o) < \pi_1(x_1) < \ldots < \pi_1(x_k)}$, where $\pi_1(x_i)$ denotes the first coordinate of x_i . Prove that

$$p_{k+1}(r) = (k+1) \int_B \dots \int_B h(o, x_1, \dots, x_k) \exp(-A(o, x_1, \dots, x_k)) dx_1 \cdots dx_k$$

Exercise 3

Let $\varphi \subset \mathbb{R}^d$ be finite and with the property that for all $x_1, x_2, y_1, y_2 \in \varphi$ with $x_1 \neq x_2, y_1 \neq y_2$ and $\{x_1, x_2\} \neq \{y_1, y_2\}$ we have $|x_1 - x_2| \neq |y_1 - y_2|$. Define a graph G_1 on the vertex set φ by drawing an edge between x and y if and only if there do not exist $x = x_0, x_1, \ldots, x_n = y$ such that $|x - y| > |x_i - x_{i+1}|$ holds for all $0 \leq i \leq n - 1$. Furthermore define a graph G_2 on the vertex W by drawing an edge between x and y if and only if there exist $W \subset \varphi$ such that $|\{x, y\} \cap W| = 1$ and $|x - y| \leq |x' - y'|$ for all $x' \in W$ and $y' \in \varphi \setminus W$.

- (a) Prove $G_1 = MST(\varphi)$.
- (b) Prove $G_2 = MST(\varphi)$.