Stochastic networks II

Problem set 8

Due date: July 3, 2012

Exercise 1

For a > 0 write $Q_a = [-a/2, a/2]^2$. Show that there exists $n_0 \ge 1$, c > 0 and a function $m : \mathbb{Z}^+ \to \mathbb{Z}^+$ such that for all $n \ge n_0$ we have $m(n) \le cn^2$ and there exist m(n) balls $B_1, \ldots, B_{m(n)}$ of radius \sqrt{n} such that every ball B of diameter at least n/2 which intersects Q_n contains at least one of the balls $B_1, B_2, \ldots, B_{m(n)}$.

Hint. Consider the set of balls centered at points of $\mathbb{Z}^2 \cap Q_{2n}$.

Exercise 2

Let $X \subset \mathbb{R}^2$ be a homogeneous Poisson point process with intensity 1 and denote by Vor(X) the Voronoi tessellation on X. For a > 0 subdivide Q_{5a} into 25 subsquares K_1, \ldots, K_{25} of side length a and denote by A_a the event that $X(K_i) \geq 1$ for all $1 \leq i \leq 25$

- (a) show that if A_a occurs, then the center of every Voronoi cell of Vor(X) which has nonempty intersection with Q_a is contained in Q_{5a} .
- (b) show that $\sum_{n=1}^{\infty} \mathbb{P}(A_n^c) < \infty$ and conclude that with probability 1 every bounded set $B \subset \mathbb{R}^2$ intersects only finitely many cells and edges of Vor(X).

Hint. Use Borel-Cantelli for part (b).

Exercise 3

Let $G \subset \mathbb{R}^2$ be a locally finite geometric graph and denote by $E_{\cup} \subset \mathbb{R}^2$ the union of the edges of G. Provide a rigorous proof for the following implications.

- (a) Every connected component of $\mathbb{R}^2 \setminus E_{\cup}$ forms a cell of G (using the definition given in the lecture notes).
- (b) Conversely every cell of G forms a connected component of $\mathbb{R}^2 \setminus E_{\cup}$.