Stochastic networks II

Problem set 8

Due date: July 3, 2012

Exercise 1

For $a>0$ write $Q_{a}=[-a / 2, a / 2]^{2}$. Show that there exists $n_{0} \geq 1, c>0$ and a function $m: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$such that for all $n \geq n_{0}$ we have $m(n) \leq c n^{2}$ and there exist $m(n)$ balls $B_{1}, \ldots, B_{m(n)}$ of radius \sqrt{n} such that every ball B of diameter at least $n / 2$ which intersects Q_{n} contains at least one of the balls $B_{1}, B_{2}, \ldots, B_{m(n)}$.

Hint. Consider the set of balls centered at points of $\mathbb{Z}^{2} \cap Q_{2 n}$.

Exercise 2

Let $X \subset \mathbb{R}^{2}$ be a homogeneous Poisson point process with intensity 1 and denote by $\operatorname{Vor}(X)$ the Voronoi tessellation on X. For $a>0$ subdivide $Q_{5 a}$ into 25 subsquares K_{1}, \ldots, K_{25} of side length a and denote by A_{a} the event that $X\left(K_{i}\right) \geq 1$ for all $1 \leq i \leq 25$
(a) show that if A_{a} occurs, then the center of every Voronoi cell of $\operatorname{Vor}(X)$ which has nonempty intersection with Q_{a} is contained in $Q_{5 a}$.
(b) show that $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}^{c}\right)<\infty$ and conclude that with probability 1 every bounded set $B \subset \mathbb{R}^{2}$ intersects only finitely many cells and edges of $\operatorname{Vor}(X)$.

Hint.Use Borel-Cantelli for part (b).

Exercise 3

Let $G \subset \mathbb{R}^{2}$ be a locally finite geometric graph and denote by $E_{\cup} \subset \mathbb{R}^{2}$ the union of the edges of G. Provide a rigorous proof for the following implications.
(a) Every connected component of $\mathbb{R}^{2} \backslash E_{\cup}$ forms a cell of G (using the definition given in the lecture notes).
(b) Conversely every cell of G forms a connected component of $\mathbb{R}^{2} \backslash E_{\cup}$.

