Stochastic networks II
Problem set 8
Due date: July 3, 2012

Exercise 1
For $a > 0$ write $Q_a = [-a/2,a/2]^2$. Show that there exists $n_0 \geq 1$, $c > 0$ and a function $m : \mathbb{Z}^+ \to \mathbb{Z}^+$ such that for all $n \geq n_0$ we have $m(n) \leq cn^2$ and there exist $m(n)$ balls $B_1, \ldots, B_{m(n)}$ of radius \sqrt{n} such that every ball B of diameter at least $n/2$ which intersects Q_n contains at least one of the balls $B_1, B_2, \ldots, B_{m(n)}$.

Hint. Consider the set of balls centered at points of $\mathbb{Z}^2 \cap Q_{2n}$.

Exercise 2
Let $X \subset \mathbb{R}^2$ be a homogeneous Poisson point process with intensity 1 and denote by $Vor(X)$ the Voronoi tessellation on X. For $a > 0$ subdivide Q_{5a} into 25 subsquares K_1, \ldots, K_{25} of side length a and denote by A_a the event that $X(K_i) \geq 1$ for all $1 \leq i \leq 25$

(a) show that if A_a occurs, then the center of every Voronoi cell of $Vor(X)$ which has non-empty intersection with Q_a is contained in Q_{5a}.

(b) show that $\sum_{n=1}^{\infty} \mathbb{P}(A_{cn}) < \infty$ and conclude that with probability 1 every bounded set $B \subset \mathbb{R}^2$ intersects only finitely many cells and edges of $Vor(X)$.

Hint. Use Borel-Cantelli for part (b).

Exercise 3
Let $G \subset \mathbb{R}^2$ be a locally finite geometric graph and denote by $E_G \subset \mathbb{R}^2$ the union of the edges of G. Provide a rigorous proof for the following implications.

(a) Every connected component of $\mathbb{R}^2 \setminus E_G$ forms a cell of G (using the definition given in the lecture notes).

(b) Conversely every cell of G forms a connected component of $\mathbb{R}^2 \setminus E_G$.