Stochastic networks II

Problem set 9

Due date: July 10, 2012

Exercise 1

Let $N \subset \mathbb{R}^{d}$ be stationary point process with intensity $\lambda \in(0, \infty)$ and denote by \mathbb{P}_{N} respectively \mathbb{P}_{N}^{0} its distribution respectively Palm distribution. Furthermore write $\mathbb{N}^{0}=\{\varphi \in \mathbb{N}: \varphi(\{o\})>$ $0\}$.
(a) Show $\mathbb{P}_{N}\left(\mathbb{N}^{0}\right)=0$.
(b) Show $\mathbb{P}_{N}^{0}\left(\mathbb{N}^{0}\right)=1$.

Exercise 2

Let $X \subset \mathbb{R}^{2}$ be a homogeneous Poisson process with intensity 1 . Denote by $\operatorname{Del}(X)$ respectively $\operatorname{Del}(X \cup\{o\})$ the Delaunay triangulation on X respectively $X \cup\{o\}$. The goal of this problem is to prove $\mathbb{E d e g}_{\text {Del }(X \cup\{o\})}(o)=6$, where for a graph $G=(V, E)$ and $v \in V$ we write $\operatorname{deg}_{G}(v)$ for the degree of the vertex v.
(a) Show that for every $a>0$ we have

$$
\mathbb{E d e g}_{\operatorname{Del}(X \cup\{o\})}(o)=a^{-2} \mathbb{E} \sum_{S_{n} \in X \cap[-a / 2, a / 2]^{2}} \operatorname{deg}_{\operatorname{Del}(X)}\left(S_{n}\right) .
$$

(b) Show that for every $n \geq 1$ we have

$$
\mathbb{E}\left|\frac{1}{6} \sum_{S_{n} \in X \cap[-n / 2, n / 2]^{2}} \operatorname{deg}_{\operatorname{Del}(X)}\left(S_{n}\right)-X\left([-n / 2, n / 2]^{2}\right)\right| \leq 5 \mathbb{E} Y_{n},
$$

where Y_{n} denotes the number of cells of $\operatorname{Del}(X)$ intersecting $\partial[-n / 2, n / 2]^{2}$.
(c) Use the ergodic theorem to conclude $\mathbb{E d e g}_{\text {Del }(X \cup\{o\})}(o)=6$.

Exercise 3

Let $r, \lambda>0$, let $X \subset \mathbb{R}^{2}$ be a homogeneous Poisson point process with intensity λ and write $X_{0}=X \cup\{o\}$.
(a) Compute the distribution of the degree of the vertex o in the r-graph $G\left(X_{0}, r\right)$.
(b) Compute the expected sum of lengths of all edges incident to o in the r-graph $G\left(X_{0}, r\right)$.
(c) Compute the expected (Euclidean) length of $[0,1]^{2} \cap G(X, r)$.

