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Solution sketches for selected problem sets

Problem set 7, Exc. 2

a. Observe we have g(ψ, ϕ) = g(ψ,B ∩ ϕ) and that g(ψ, ϕ) can only be non-zero if ψ ⊂ B. In
particular, by applying the Slivnyak-Mecke formula we obtain

p̃k+1(r) =
1

k!
E

∑
X1,...,Xk∈X

g({X1, . . . , Xk}, X ∩B)

=
1

k!

∫
R2

dy1 · · ·
∫
R2

dykE (g({y1, . . . , yk}, (X ∩B) ∪ {y1, . . . , yk}))

=
1

k!

∫
B

dy1 · · ·
∫
B

dykE (g({y1, . . . , yk}, (X ∩B) ∪ {y1, . . . , yk}))

=
ν2(B)k

k!

∫
B

1

ν2(B)
dy1 · · ·

∫
B

dyk
1

ν2(B)
E (g({y1, . . . , yk}, (X ∩B) ∪ {y1, . . . , yk}))

=
(π(k + 3)2r2)k

k!
E (g(Y, (X ∩B) ∪ Y ))

b. As before we use the Slivnyak-Mecke formula to compute.

p̃k+1(r) =
1

k!

∫
B

dy1 · · ·
∫
B

dykE (g({y1, . . . , yk}, (X ∩B) ∪ {y1, . . . , yk}))

=
1

k!

∫
B

dy1 · · ·
∫
B

dykh̃(y1, . . . , yk) exp

(
−ν2(Br(o) ∪

k⋃
i=1

Br(yi))

)
=

1

k!

∫
B

dx1 · · ·
∫
B

dxkh̃(x1, . . . , xk) exp (−A(o, x1, . . . , xk))

c. Observe that applying any permutation of the values of (x1, . . . , xk) in the integral formula in
part (b) does not change the value of the integral. In particular we may also only integrate over
the set {π1(o) < π1(x1) < . . . < π1(xk)} and multiply the result by k! afterwards. In particular,
we have

p̃k+1(r) =

∫
B

dx1 · · ·
∫
B

dxkh(x1, . . . , xk) exp (−A(o, x1, . . . , xk)) .

Combining this result with the relation pk+1(r) = (k + 1)p̃k+1(r)



Problem set 8, Exc. 2b

We compute

P (Ac
n) ≤

25∑
i=1

P (X(Ki) = 0)

= 25P (X(Qn) = 0)

= 25 exp(−n2),

so that ∑
n≥1

P (Ac
n) ≤ 25

∑
n≥1

e−n

=
25e−1

1− e−1
<∞

In particular, with probability 1 there exists N ≥ 1 such that for all n ≥ N the centerr of
every Voronoi cell intersecting Qn(o) is contained in Q5n(o). Since any bounded set B ⊂ R2 is
contained in Qn1(o) for some n1 sufficiently large we see that the number of cells intersecting
B is bounded from above by X(Q5n1(o)) <∞. Since any edge is adjacent to two Voronoi cells,
we see that the number of edges intersecting B is bounded from above by X(Q5n1(o))

2.

Problem set 8, Exc. 3

a. First observe that E∪ is closed. Indeed, let x ∈ R2 \ E∪. Then, by local finiteness, B1(x)
intersects only finitely many edges e1, . . . , em of G. Denote by r half the minimal distance of x
to one of e1, . . . , em. Then Br(x) ∩ E∪ = ∅, so that R2 \ E∪ is open.

Now let C ⊂ R2 be a connected compoonent of R2 \ E∪. In particular, C is both open and
closed in the trace topology of R2 \E∪. Since R2 \E∪ is open, we conclude also that C is open.

Finally let y ∈ ∂C be arbitrary and suppose y 6∈ E∪. Then choose r > 0 such that Br(y)∩E∪ =
∅. In particular, all elements of Br(y) are contained in the same connected component of
R2 \E∪. However, by assumption we have Br(y)∩C 6= ∅ and Br(y)∩ (R2 \ C) 6= ∅ which yields
a contradiction to the assumption that C is a connected component.

b.Let C be a cell as in the definition given in the lecture notes. By assumption C is connected.
Denote by C ′ ⊂ R2 \E∪ the connected component of R2 \E∪ containing C. Assume x0 ∈ C ′ \C
and choose x1 ∈ C and a path γ ⊂ C ′ connecting x0 and x1. Let x2 be the last point of γ such
that all previous points lie in C. In particular, we conclude x2 ∈ ∂C, i.e. P ∈ E∪. However,
this is a contradiction to the assumption that γ lies in R2 \ E∪.



Problem set 9, Exc. 2

a.Using the Slivnyak-Mecke formula and stationarity of X we compute

a−2E
∑

Sn∈X∩[−a/2,a/2]2
degDel(X)(Sn) = a−2

∫
dx1x∈[−a/2,a/2]2EdegDel(X∪{x})(x)

= a−2
∫
dx1x∈[−a/2,a/2]2EdegDel(X∪{o})(o)

= a−2ν2([−a/2, a/2]2)EdegDel(X∪{o})(o)

= EdegDel(X∪{o})(o)

b. Consider the graph G formed by triangles intersecting [−n/2, n/2]2. Then we use a number
of notations

(a) the number of Delaunay triangles in G is denoted by f

(b) the number of vertices in G is denoted by m

(c) the number of edges in G is denoted by e

(d) the number of edges in G such that both endpoints lie in Qn is denoted by e1

(e) the number of edges in G such that exactly one endpoint lies in Qn is denoted by e2

(f) the number of edges in G such that none of its endpoint lies in Qn is denoted by e3

Note that since G is a planar graph we may apply Euler’s formula to obtain

e = f +m− 1, (1)

(note that f does not contain the ”outer” face which is unbounded). Furthermore it is easy to
check that we have ∑

Si∈X∩Qn

degDel(X)(Si) = 2e1 + e2, (2)

and

3f = 2e1 + 2e2 + e3. (3)

From (1) and (3) we obtain

e =
2

3
e− 1

3
e3 +m− 1 (4)

or equivalently

e = −e3 + 3m− 3. (5)

Finally combining (5) and (2) we obtain∑
Si∈X∩Qn

degDel(X)(Si) = −e2 − 4e3 + 6m− 6. (6)



In particular, we obtain∣∣∣∣∣16 ∑
Si∈X∩Qn

degDel(X)(Si)−X([−n/2, n/2]2)

∣∣∣∣∣ =

∣∣∣∣m−X([−n/2, n/2]2)− 1− 1

6
e2 −

2

3
e3

∣∣∣∣ ≤ 5Yn.

For the last inequality we made use of the following easy relations.

(a) e2 ≤ 2Yn

(b) e3 ≤ Yn

(c) |m−X([−n/2, n/2]2)| ≤ Yn

c.Using part (a) and (b) we compute∣∣∣∣16EdegDel(X∪{o})(o)− 1

∣∣∣∣
≤

∣∣∣∣∣n−26
E

∑
Si∈X∩Qn

degDel(X)(Si)− n−2EX([−n/2, n/2]2)

∣∣∣∣∣
+
∣∣n−2EX([−n/2, n/2]2)− 1

∣∣
≤ 5n−2

6
EYn

+
∣∣n−2EX([−n/2, n/2]2)− 1

∣∣
By ergodicity the second part tends to 0 so that it suffices to show n−2EYn → 0. If we denote
(as in part (b)) by e2 = e2(n) the number of edges in Del(X) such that exactly one end-point
is contained in [−n/2, n/2]2, then it is easy to see that we have Yn ≤ 2e2(n). Furthermore we

denote by Z
(1)
n the sum of degrees of points in X ∩ (Qn(o) \Qn−

√
n(o)) and by Z

(2)
n the number

of edges such that one end point is contained in Qn−
√
n(o) and the other one in R2 \Qn(o), then

it is easy to check that we have e2(n) ≤ Z
(1)
n +Z

(2)
n . We consider the two summands separately.

First we compute

n−2EZ(1)
n = n−2E

∑
Xi∈X∩(Qn(o)\Qn−

√
n(o))

degDel(X)(Xi)

= n−2ν2(Qn(o) \Qn−
√
n(o))EdegDel(X)(o)

and the latter expression tends to 0 as n→∞.



For Z
(2)
n we compute

EZ(2)
n = E

∑
Xi∈X∩Qn(o)

∑
Xj∈X

1{Xi,Xj}∈Del(X)1|Xi−Xj |≥
√
n

=

∫
dx

∫
dy1x∈Qn(o)1|x−y|≥

√
nE
(
1{x,y}∈Del(X∪{x,y})

)
≤
∫
dx

∫
dy1x∈Qn(o)1|x−y|≥

√
n exp(−π |x− y|2 /4)

=

∫
dx

∫
dz1x∈Qn(o)1|z|≥

√
n exp(−π |z|2 /4)

= 2π

∫
dx

∫ ∞
√
n

dr1x∈Qn(o)r exp(−πr2/4)

= 2πn2

∫ ∞
√
n

drr exp(−πr2/4)

= 4πn2 exp(−πn/4),

and the latter expresion tends to 0 as n→∞.


