Solution sketches for selected problem sets

Problem set 7, Exc. 2

a. Observe we have $g(\psi, \varphi)=g(\psi, B \cap \varphi)$ and that $g(\psi, \varphi)$ can only be non-zero if $\psi \subset B$. In particular, by applying the Slivnyak-Mecke formula we obtain

$$
\begin{aligned}
\widetilde{p_{k+1}}(r) & =\frac{1}{k!} \mathbb{E} \sum_{X_{1}, \ldots, X_{k} \in X} g\left(\left\{X_{1}, \ldots, X_{k}\right\}, X \cap B\right) \\
& =\frac{1}{k!} \int_{\mathbb{R}^{2}} d y_{1} \cdots \int_{\mathbb{R}^{2}} d y_{k} \mathbb{E}\left(g\left(\left\{y_{1}, \ldots, y_{k}\right\},(X \cap B) \cup\left\{y_{1}, \ldots, y_{k}\right\}\right)\right) \\
& =\frac{1}{k!} \int_{B} d y_{1} \cdots \int_{B} d y_{k} \mathbb{E}\left(g\left(\left\{y_{1}, \ldots, y_{k}\right\},(X \cap B) \cup\left\{y_{1}, \ldots, y_{k}\right\}\right)\right) \\
& =\frac{\nu_{2}(B)^{k}}{k!} \int_{B} \frac{1}{\nu_{2}(B)} d y_{1} \cdots \int_{B} d y_{k} \frac{1}{\nu_{2}(B)} \mathbb{E}\left(g\left(\left\{y_{1}, \ldots, y_{k}\right\},(X \cap B) \cup\left\{y_{1}, \ldots, y_{k}\right\}\right)\right) \\
& =\frac{\left(\pi(k+3)^{2} r^{2}\right)^{k}}{k!} \mathbb{E}(g(Y,(X \cap B) \cup Y))
\end{aligned}
$$

b. As before we use the Slivnyak-Mecke formula to compute.

$$
\begin{aligned}
\widetilde{p_{k+1}}(r) & =\frac{1}{k!} \int_{B} d y_{1} \cdots \int_{B} d y_{k} \mathbb{E}\left(g\left(\left\{y_{1}, \ldots, y_{k}\right\},(X \cap B) \cup\left\{y_{1}, \ldots, y_{k}\right\}\right)\right) \\
& =\frac{1}{k!} \int_{B} d y_{1} \cdots \int_{B} d y_{k} \widetilde{h}\left(y_{1}, \ldots, y_{k}\right) \exp \left(-\nu_{2}\left(B_{r}(o) \cup \bigcup_{i=1}^{k} B_{r}\left(y_{i}\right)\right)\right) \\
& =\frac{1}{k!} \int_{B} d x_{1} \cdots \int_{B} d x_{k} \widetilde{h}\left(x_{1}, \ldots, x_{k}\right) \exp \left(-A\left(o, x_{1}, \ldots, x_{k}\right)\right)
\end{aligned}
$$

c. Observe that applying any permutation of the values of $\left(x_{1}, \ldots, x_{k}\right)$ in the integral formula in part (b) does not change the value of the integral. In particular we may also only integrate over the set $\left\{\pi_{1}(o)<\pi_{1}\left(x_{1}\right)<\ldots<\pi_{1}\left(x_{k}\right)\right\}$ and multiply the result by k ! afterwards. In particular, we have

$$
\widetilde{p_{k+1}}(r)=\int_{B} d x_{1} \cdots \int_{B} d x_{k} h\left(x_{1}, \ldots, x_{k}\right) \exp \left(-A\left(o, x_{1}, \ldots, x_{k}\right)\right) .
$$

Combining this result with the relation $p_{k+1}(r)=(k+1) \widetilde{p_{k+1}}(r)$

Problem set 8, Exc. 2b

We compute

$$
\begin{aligned}
\mathbb{P}\left(A_{n}^{c}\right) & \leq \sum_{i=1}^{25} \mathbb{P}\left(X\left(K_{i}\right)=0\right) \\
& =25 \mathbb{P}\left(X\left(Q_{n}\right)=0\right) \\
& =25 \exp \left(-n^{2}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
\sum_{n \geq 1} \mathbb{P}\left(A_{n}^{c}\right) & \leq 25 \sum_{n \geq 1} e^{-n} \\
& =\frac{25 e^{-1}}{1-e^{-1}} \\
& <\infty
\end{aligned}
$$

In particular, with probability 1 there exists $N \geq 1$ such that for all $n \geq N$ the centerr of every Voronoi cell intersecting $Q_{n}(o)$ is contained in $Q_{5 n}(o)$. Since any bounded set $B \subset \mathbb{R}^{2}$ is contained in $Q_{n_{1}}(o)$ for some n_{1} sufficiently large we see that the number of cells intersecting B is bounded from above by $X\left(Q_{5 n_{1}}(o)\right)<\infty$. Since any edge is adjacent to two Voronoi cells, we see that the number of edges intersecting B is bounded from above by $X\left(Q_{5 n_{1}}(o)\right)^{2}$.

Problem set 8, Exc. 3

a. First observe that E_{\cup} is closed. Indeed, let $x \in \mathbb{R}^{2} \backslash E_{\cup}$. Then, by local finiteness, $B_{1}(x)$ intersects only finitely many edges e_{1}, \ldots, e_{m} of G. Denote by r half the minimal distance of x to one of e_{1}, \ldots, e_{m}. Then $B_{r}(x) \cap E_{\cup}=\emptyset$, so that $\mathbb{R}^{2} \backslash E_{\cup}$ is open.

Now let $C \subset \mathbb{R}^{2}$ be a connected compoonent of $\mathbb{R}^{2} \backslash E_{\cup}$. In particular, C is both open and closed in the trace topology of $\mathbb{R}^{2} \backslash E_{\cup}$. Since $\mathbb{R}^{2} \backslash E_{\cup}$ is open, we conclude also that C is open.

Finally let $y \in \partial C$ be arbitrary and suppose $y \notin E_{\cup}$. Then choose $r>0$ such that $B_{r}(y) \cap E_{\cup}=$ \emptyset. In particular, all elements of $B_{r}(y)$ are contained in the same connected component of $\mathbb{R}^{2} \backslash E_{\cup}$. However, by assumption we have $B_{r}(y) \cap C \neq \emptyset$ and $B_{r}(y) \cap\left(\mathbb{R}^{2} \backslash C\right) \neq \emptyset$ which yields a contradiction to the assumption that C is a connected component.
b. Let C be a cell as in the definition given in the lecture notes. By assumption C is connected. Denote by $C^{\prime} \subset \mathbb{R}^{2} \backslash E_{\cup}$ the connected component of $\mathbb{R}^{2} \backslash E_{\cup}$ containing C. Assume $x_{0} \in C^{\prime} \backslash C$ and choose $x_{1} \in C$ and a path $\gamma \subset C^{\prime}$ connecting x_{0} and x_{1}. Let x_{2} be the last point of γ such that all previous points lie in C. In particular, we conclude $x_{2} \in \partial C$, i.e. $P \in E \cup$. However, this is a contradiction to the assumption that γ lies in $\mathbb{R}^{2} \backslash E_{\cup}$.

Problem set 9, Exc. 2

a.Using the Slivnyak-Mecke formula and stationarity of X we compute

$$
\begin{aligned}
a^{-2} \mathbb{E} \sum_{S_{n} \in X \cap[-a / 2, a / 2]^{2}} d e g_{\operatorname{Del}(X)}\left(S_{n}\right) & =a^{-2} \int d x 1_{x \in[-a / 2, a / 2]^{2}} \mathbb{E} d e g_{\operatorname{Del}(X \cup\{x\})}(x) \\
& =a^{-2} \int d x 1_{x \in[-a / 2, a / 2]^{2}} \mathbb{E} d e g_{\operatorname{Del}(X \cup\{o\})}(o) \\
& =a^{-2} \nu_{2}\left([-a / 2, a / 2]^{2}\right) \mathbb{E} \operatorname{deg} g_{\operatorname{Del}(X \cup\{o\})}(o) \\
& =\mathbb{E} \operatorname{deg}_{\operatorname{Del}(X \cup\{o\})}(o)
\end{aligned}
$$

b. Consider the graph G formed by triangles intersecting $[-n / 2, n / 2]^{2}$. Then we use a number of notations
(a) the number of Delaunay triangles in G is denoted by f
(b) the number of vertices in G is denoted by m
(c) the number of edges in G is denoted by e
(d) the number of edges in G such that both endpoints lie in Q_{n} is denoted by e_{1}
(e) the number of edges in G such that exactly one endpoint lies in Q_{n} is denoted by e_{2}
(f) the number of edges in G such that none of its endpoint lies in Q_{n} is denoted by e_{3} Note that since G is a planar graph we may apply Euler's formula to obtain

$$
\begin{equation*}
e=f+m-1, \tag{1}
\end{equation*}
$$

(note that f does not contain the "outer" face which is unbounded). Furthermore it is easy to check that we have

$$
\begin{equation*}
\sum_{S_{i} \in X \cap Q_{n}} d e g_{\operatorname{Del}(X)}\left(S_{i}\right)=2 e_{1}+e_{2} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
3 f=2 e_{1}+2 e_{2}+e_{3} \tag{3}
\end{equation*}
$$

From (1) and (3) we obtain

$$
\begin{equation*}
e=\frac{2}{3} e-\frac{1}{3} e_{3}+m-1 \tag{4}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
e=-e_{3}+3 m-3 \tag{5}
\end{equation*}
$$

Finally combining (5) and (2) we obtain

$$
\begin{equation*}
\sum_{S_{i} \in X \cap Q_{n}} d e g_{\operatorname{Del}(X)}\left(S_{i}\right)=-e_{2}-4 e_{3}+6 m-6 . \tag{6}
\end{equation*}
$$

In particular, we obtain

$$
\left|\frac{1}{6} \sum_{S_{i} \in X \cap Q_{n}} \operatorname{deg} g_{\operatorname{Del}(X)}\left(S_{i}\right)-X\left([-n / 2, n / 2]^{2}\right)\right|=\left|m-X\left([-n / 2, n / 2]^{2}\right)-1-\frac{1}{6} e_{2}-\frac{2}{3} e_{3}\right| \leq 5 Y_{n} .
$$

For the last inequality we made use of the following easy relations.
(a) $e_{2} \leq 2 Y_{n}$
(b) $e_{3} \leq Y_{n}$
(c) $\left|m-X\left([-n / 2, n / 2]^{2}\right)\right| \leq Y_{n}$
c.Using part (a) and (b) we compute

$$
\begin{aligned}
& \left|\frac{1}{6} \mathbb{E} d e g_{\text {Del }(X \cup\{o\})}(o)-1\right| \\
& \leq\left|\frac{n^{-2}}{6} \mathbb{E} \sum_{S_{i} \in X \cap Q_{n}} d e g_{\text {Del }(X)}\left(S_{i}\right)-n^{-2} \mathbb{E} X\left([-n / 2, n / 2]^{2}\right)\right| \\
& +\left|n^{-2} \mathbb{E} X\left([-n / 2, n / 2]^{2}\right)-1\right| \\
& \leq \frac{5 n^{-2}}{6} \mathbb{E} Y_{n} \\
& +\left|n^{-2} \mathbb{E} X\left([-n / 2, n / 2]^{2}\right)-1\right|
\end{aligned}
$$

By ergodicity the second part tends to 0 so that it suffices to show $n^{-2} \mathbb{E} Y_{n} \rightarrow 0$. If we denote (as in part (b)) by $e_{2}=e_{2}(n)$ the number of edges in $\operatorname{Del}(X)$ such that exactly one end-point is contained in $[-n / 2, n / 2]^{2}$, then it is easy to see that we have $Y_{n} \leq 2 e_{2}(n)$. Furthermore we denote by $Z_{n}^{(1)}$ the sum of degrees of points in $X \cap\left(Q_{n}(o) \backslash Q_{n-\sqrt{n}}(o)\right)$ and by $Z_{n}^{(2)}$ the number of edges such that one end point is contained in $Q_{n-\sqrt{n}}(o)$ and the other one in $\mathbb{R}^{2} \backslash Q_{n}(o)$, then it is easy to check that we have $e_{2}(n) \leq Z_{n}^{(1)}+Z_{n}^{(2)}$. We consider the two summands separately. First we compute

$$
\begin{aligned}
n^{-2} \mathbb{E} Z_{n}^{(1)} & =n^{-2} \mathbb{E} \sum_{X_{i} \in X \cap\left(Q_{n}(o) \backslash Q_{n-\sqrt{n}}(o)\right)} \operatorname{deg}_{\operatorname{Del}(X)}\left(X_{i}\right) \\
& =n^{-2} \nu_{2}\left(Q_{n}(o) \backslash Q_{n-\sqrt{n}}(o)\right) \mathbb{E} \operatorname{deg}_{\operatorname{Del}(X)}(o)
\end{aligned}
$$

and the latter expression tends to 0 as $n \rightarrow \infty$.

For $Z_{n}^{(2)}$ we compute

$$
\begin{aligned}
\mathbb{E} Z_{n}^{(2)} & =\mathbb{E} \sum_{X_{i} \in X \cap Q_{n}(o)} \sum_{X_{j} \in X} 1_{\left\{X_{i}, X_{j}\right\} \in \operatorname{Del}(X)} 1_{\left|X_{i}-X_{j}\right| \geq \sqrt{n}} \\
& =\int d x \int d y 1_{x \in Q_{n}(o)} 1_{|x-y| \geq \sqrt{n}} \mathbb{E}\left(1_{\{x, y\} \in \operatorname{Del}(X \cup\{x, y\})}\right) \\
& \leq \int d x \int d y 1_{x \in Q_{n}(o)} 1_{|x-y| \geq \sqrt{n}} \exp \left(-\pi|x-y|^{2} / 4\right) \\
& =\int d x \int d z 1_{x \in Q_{n}(o)} 1_{|z| \geq \sqrt{n}} \exp \left(-\pi|z|^{2} / 4\right) \\
& =2 \pi \int d x \int_{\sqrt{n}}^{\infty} d r 1_{x \in Q_{n}(o)} r \exp \left(-\pi r^{2} / 4\right) \\
& =2 \pi n^{2} \int_{\sqrt{n}}^{\infty} d r r \exp \left(-\pi r^{2} / 4\right) \\
& =4 \pi n^{2} \exp (-\pi n / 4)
\end{aligned}
$$

and the latter expresion tends to 0 as $n \rightarrow \infty$.

