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Solution sketches for selected problem sets

Problem set 7, Exc. 2

a. Observe we have g(1, ) = g(1b, BN ¢) and that ¢g(1, ¢) can only be non-zero if » C B. In
particular, by applying the Slivnyak-Mecke formula we obtain

e (r) = Lg > g({Xy,.... X}, XN B)

k! X1, Xp€X
:% dyl.../RQdykE(g({yl,...,yk},(XﬂB)U{yla--wyk}))

=i [ane [ anE o, (X0 B)U ()
_ V2(lf)k BV2(13)dy1.../dekﬁﬁ,(g({yl,...,yk},(XmB)U{yl,..-,yk}))
_ (m(k +kf’>2r2)k11«: (g(Y, (X NB)UY))

b. As before we use the Slivnyak-Mecke formula to compute.

() = g5 [ i+ [ B (ot (X1 B) U )
k
/dy1 /dykh Yty .-, Yk) €XP <_V2(B (o )UUBT(yi)))

k;' dxl /dwkh (x1,...,z) exp (Ao, 21, ...,21))

c. Observe that applying any permutation of the values of (xy, ..., z) in the integral formula in

part (b) does not change the value of the integral. In particular we may also only integrate over
the set {m(0) < m(z1) < ... < m(x)} and multiply the result by k! afterwards. In particular,

we have
Prra(r / dry - - / dzph(wy, ..., o) exp (Ao, 21, .., 1)) -

Combining this result with the relation pgi1(r) = (k + 1)ppr1(r)



Problem set 8, Exc. 2b

We compute

P(A;) < D P(X(K) = 0)

— 5P (X(Qu) = 0)
= 25 exp(—n?),

so that

d P(A)<25) e

n>1 n>1
25¢1
1—e1

< 00

In particular, with probability 1 there exists N > 1 such that for all n > N the centerr of
every Voronoi cell intersecting @, (0) is contained in @, (0). Since any bounded set B C R? is
contained in @,, (o) for some n; sufficiently large we see that the number of cells intersecting
B is bounded from above by X (Qs,,(0)) < co. Since any edge is adjacent to two Voronoi cells,
we see that the number of edges intersecting B is bounded from above by X (Qs,, (0))%.

Problem set 8, Exc. 3

a. First observe that Ey, is closed. Indeed, let # € R?\ E_. Then, by local finiteness, B;(z)
intersects only finitely many edges e, ..., e, of G. Denote by r half the minimal distance of z
to one of e1,...,¢e,. Then B,(z) N E, =0, so that R?\ E_ is open.

Now let C' C R? be a connected compoonent of R? \ E. In particular, C' is both open and
closed in the trace topology of R?\ E,. Since R?\ E|, is open, we conclude also that C'is open.

Finally let y € OC be arbitrary and suppose y ¢ E. Then choose r > 0 such that B,(y) N Ey =
(). In particular, all elements of B,(y) are contained in the same connected component of
R?\ E,. However, by assumption we have B,(y) N C # () and B,(y) N (R?\ C) # () which yields
a contradiction to the assumption that C' is a connected component.

b.Let C be a cell as in the definition given in the lecture notes. By assumption C' is connected.
Denote by €’ C R?\ E}, the connected component of R?\ E|, containing C'. Assume xq € C'\ C
and choose x1 € C and a path v C C’ connecting xy and ;. Let xo be the last point of v such
that all previous points lie in C. In particular, we conclude x5 € 0C, i.e. P € E,. However,
this is a contradiction to the assumption that v lies in R? \ Ep.



Problem set 9, Exc. 2
a.Using the Slivnyak-Mecke formula and stationarity of X we compute

a’E Z degDel(X)(Sn) = G_Q/de1xe[—a/Q,a/2]2EdegDel(Xu{x})(93)

SneXN[—a/2,a/2)2
— 2 / drlse|-a/2a/22Bdegperxifon (0)

= a *va([—a/2, a/2)*)Edegpeyxuioy) (0)
= Edegpe(xuioy) (0)
b. Consider the graph G formed by triangles intersecting [—n/2,n/2]?. Then we use a number
of notations
(a) the number of Delaunay triangles in G is denoted by f
(b) the number of vertices in G is denoted by m
(¢) the number of edges in G is denoted by e
(

d) the number of edges in G such that both endpoints lie in @),, is denoted by e;

)
)
)
(e) the number of edges in G such that exactly one endpoint lies in @, is denoted by e,
(f) the number of edges in G such that none of its endpoint lies in @,, is denoted by e3

Note that since G is a planar graph we may apply Euler’s formula to obtain
e=f+m-—1, (1)

(note that f does not contain the ”outer” face which is unbounded). Furthermore it is easy to
check that we have

> degpax)(Si) = 2e1 + e, (2)
S,€XNQn
and
3f == 261 + 262 + €3. (3)
From (1) and (3) we obtain
2 1
e:§e—§eg+m—1 (4)
or equivalently
e=—e3+3m — 3. (5)

Finally combining (5) and (2) we obtain

Z degpe(x)(Si) = —ea — 4ez + 6m — 6. (6)
S;€EXNQn



In particular, we obtain

m— X([-n/2,n/2%) — 1 — G2~ 36 < 5Y,.

é Z degpax)(Si) — X ([-n/2,n/2]%)

SiGXOQ'n

‘ 1 2

For the last inequality we made use of the following easy relations.
(a) es <2V,
(b) es <Y,
(¢) [m—X([=n/2,n/2P)| <Y,

c.Using part (a) and (b) we compute

1
‘aEdegDel(Xu{o})(O) — 1'

—2
n
< TE Z degpei(x)(Si) — n_QEX([—”/Qa”/Q]Q)
S;i€XNQn
+ [nEX([-n/2,n/2)?) — 1|
—2
< om EY,

+ [nEX([-n/2,n/2)?) — 1|

By ergodicity the second part tends to 0 so that it suffices to show n2EY,, — 0. If we denote
(as in part (b)) by ey = ea(n) the number of edges in Del(X) such that exactly one end-point
is contained in [—n/2,n/2]%, then it is easy to see that we have Y,, < 2ey(n). Furthermore we

denote by 7tV the sum of degrees of points in X N (Qn(0) \ @,z (0)) and by Zt? the number
of edges such that one end point is contained in Q,,_ /(o) and the other one in R?\ @, (0), then

it is easy to check that we have ey(n) < ZM + 7% We consider the two summands separately.

First we compute

n_2]EZ7(11) = TL_Q]E Z degDel(X) (Xz)
X:€XN(Qn(0)\Q,,— /7 (0))

= n"215(Qn(0) \ Q- ym(0))Edegperx)(0)

and the latter expression tends to 0 as n — co.



For Z,(f) we compute

EZP=E Y > lpaxpenaolix x sy

XiGXﬁQn(O) Xj eX

= / dx / QY loequ(o)Ljo—yi>yaE (LsgreDexufsy)
< /dx/dylzec?n@lxy|z\/ﬁexp<—ﬂx—y’2/4)
:/dx/d“%@nw)hzzﬁeXP(—W|z’2/4)

= 27T/dx/ drlseq, o) exp(—mr?/4)
\/ﬁ

= 27m2/ drr exp(—mnr?/4)
N
= 4mn? exp(—7mn/4),

and the latter expresion tends to 0 as n — oo.



