Dr. Tim Brereton
Matthias Neumann

Methods of Monte Carlo Simulation II Exercise about reading material 2

Exercise 1

Let X be a random variable with density function

$$
f_{X}(x)=\frac{\exp \left(-4 x^{2}\right)}{\int_{0}^{1} \exp \left(-4 t^{2}\right) \mathrm{d} t} \mathbb{I}\{x \in[0,1]\} .
$$

Estimate $\mathbb{P}(X>3 / 4)$ by weighted importance sampling with sampling density $g(x)=$ $\mathbb{I}\{x \in[0,1]\}$. Use a sample size of 10000 .

Exercise 2

Modify the Matlab code given in Listing 4 of the reading material in order to simulate a self-avoiding random walk with $X_{0}=(0,0)$ of length $n=200$ on $\mathbb{Z}_{>0}^{2}$. This means that all states of the random walk are tuples of non-negative integers. Plot one realization.

Exercise 3

Modify the Matlab code given in Listing 4 of the reading material in order to simulate a self-avoiding random walk with $X_{0}=(0,0)$ of length $n=100$ on \mathbb{Z}^{2}, where it is possible to move to diagonal neighbors. This means that from state $(0,0)$ you can reach states $(1,1),(1,0),(1,-1),(0,1),(0,-1),(-1,1),(-1,0)$ and $(-1,-1)$. Plot one realization.

