

ulm university universität

Dr. Tim Brereton Matthias Neumann

Summer Term 2014

Methods of Monte Carlo Simulation II Exercise Sheet 1

Deadline: Mai 2, 2014 at 11am before the exercises Please hand in a printed version of your Matlab code and the output of the programs

Exercise 1 (3)

Consider two gamblers, A and B, playing a game where A wins with probability $q \in (0, 1)$ and B wins with probability 1-q. Gambler A starts with s_A Euro and B starts with s_B Euro. The gambler who wins gets one Euro from his opponent. They repeat the game infinitely many times. Suppose that negative capital of one of the gamblers is possible.

Let $\{X_n\}_{n\geq 0}$ be the stochastic process where X_n denotes the capital in Euro of gambler A after n games. Show that $\{X_n\}_{n\geq 0}$ is a random walk.

Exercise 2 (3+3+4)

Consider the case of Exercise 1 with q = 0.6, $s_A = 6$, $s_B = 4$ and let $\{X_n\}_{n \ge 0}$ be defined as above.

- a) Write a Matlab program for simulating the first N values of $\{X_n\}_{n\geq 0}$, i.e. X_1, \ldots, X_N . Plot one realization for each $N \in \{10, 100, 10000\}$.
- b) Let $\tau = \inf \{n \ge 0 : X_n \in \{0, s_A + s_B\}\}$ be the random number of games after which the game ends if negative capital is not possible. Write a Matlab program for estimating $\mathbb{P}(\tau = 8)$ based on 1000 realizations of $\{X_n\}_{n \ge 0}$.

Hint: For estimating $\mathbb{P}(\tau = 8)$ simulate 1000 realizations $\{X_n^{(1)}\}_{n\geq 0}, \ldots, \{X_n^{(1000)}\}_{n\geq 0}$ of $\{X_n\}_{n\geq 0}$ and compute the corresponding values of τ denoted by $\tau^{(1)}, \ldots, \tau^{(1000)}$. Then, estimate the probability $\mathbb{P}(\tau = 8)$ by

$$\widehat{p_8} = \frac{1}{1000} \sum_{i=1}^{1000} \mathbb{I}\left(\tau^{(i)} = 8\right).$$

c) Calculate $\mathbb{P}(\inf \{n \ge 0 : X_n \ge 8\} \le 4)$ and write a Matlab programm to estimate $\mathbb{P}(\inf \{n \ge 0 : X_n \ge 8\} \le 4)$ based on 1000 realizations of $\{X_n\}_{n\ge 0}$. Proceed analogously to part b).