

ulm university universität

Dr. Tim Brereton Matthias Neumann

Summer Term 2014

Methods of Monte Carlo Simulation II Exercise Sheet 2

Deadline: Mai 8, 2014 at 1pm before the exercises Please hand in a printed version of your Matlab code and the output of the programs

Exercise 1 (2)

Let $\{X^{(i)}\}_{i=1}^N$ be a sequence of i.i.d. random variables with $\mathbb{E}(X^{(1)})^2 < \infty$. Show that

$$\widehat{\sigma^2} = \frac{1}{N-1} \left(\sum_{i=1}^N \left(X^{(i)} \right)^2 - \frac{1}{N} \left(\sum_{i=1}^N X^{(i)} \right)^2 \right)$$

is an unbiased estimator for $\operatorname{Var} X^{(1)}$.

Exercise 2 (2+4)

Consider the random walk $\{X_n\}_{n\geq 0}$ with parameter q = 0.5 and $X_0 = 0$.

- a) Calculate $\gamma(n) = \operatorname{Var} X_n$ for an arbitrary $n \ge 0$.
- b) Write a Matlab program for computing the estimators $\widehat{\gamma(1)}, \ldots, \widehat{\gamma(100)}$ for $\gamma(1), \ldots, \gamma(100)$ based on 1000 realizations of $\{X_n\}_{n\geq 0}$. Compute also the corresponding asymptotic 95% confidence intervals (a(n), b(n)) for each $\widehat{\gamma(n)}, n \in \{1, \ldots, 100\}$. Plot $\gamma, \widehat{\gamma}, a$ and b in a single figure in order to visualize your results. Hint: Plot γ at first and use the command hold on before plotting $\widehat{\gamma}, a$ and b.

Exercise 3 (2+1+4)

Consider the gamblers A and B from Exercise Sheet 1 with $s_A = s_B = 5$ and q = 0.5. If one of the gamblers is ruined, the other one gives him 1 Euro and they continue gambling. Let $\{X_n\}_{n\geq 0}$ be the stochastic process where X_n denotes the capital in Euro of gambler A after n games.

a) Write a Matlab program for simulating the first N values of $\{X_n\}_{n\geq 0}$, i.e. X_1, \ldots, X_N . Generate 1000 realizations of $\{X_n\}_{n\geq 0}^{1000}$ and plot a histogram of the realizations of X_{n_0} for each $n_0 \in \{5, 50, 100, 1000\}$. Each possible state of $\{X_n\}_{n\geq 0}$ should be represented by a single bin in the histogram. *Hint: Use the command* hist.

- b) Determine the distribution of X_2 .
- c) Write a Matlab program for computing the estimators \hat{p}_i of $\mathbb{P}(X_{1000} = i)$ for $i \in \{0, \dots, 10\}$ such that

 $\mathbb{P}(|\mathbb{P}(X_{1000} = i) - \hat{p}_i| > 0.01) \le 0.05.$