Methods of Monte Carlo Simulation II Exercise Sheet 5

Deadline: June 5, 2014 at 10pm before the lecture

Exercise $1 \quad(2+2)$

Let $\left\{X_{n}\right\}_{n \geq 0}$ be a Markov chain with transition matrix $P=\left(P_{i, j}\right)_{i, j=0, \ldots, l}$ where

$$
P_{i, j}= \begin{cases}\frac{l-i}{l} & \text { if } i<l \text { and } j=i+1 \\ \frac{i}{l} & \text { if } i>0 \text { and } j=i-1 \\ 0 & \text { else. }\end{cases}
$$

a) Show that the stationary distribution $\alpha=\left(\alpha_{0}, \ldots, \alpha_{l}\right)$ of $\left\{X_{n}\right\}_{n \geq 0}$ is given by $\alpha_{i}=2^{-l}\binom{l}{i}$ for all $i \in\{0, \ldots, l\}$.
b) Show that $\left\{X_{n}\right\}_{n \geq 0}$ with initial distribution α is reversible.

Exercise $2(2+2+2)$
Let $\left\{X_{n}\right\}_{n \geq 0}$ be a random walk on the graph $G=(V, E)$ with

$$
\begin{aligned}
V= & \left\{v_{1}, \ldots v_{8}\right\} \\
E= & \left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{2}, v_{3}\right),\left(v_{2}, v_{8}\right),\left(v_{3}, v_{4}\right),\left(v_{3}, v_{7}\right),\right. \\
& \left.\left(v_{3}, v_{8}\right),\left(v_{4}, v_{5}\right),\left(v_{4}, v_{6}\right),\left(v_{5}, v_{6}\right),\left(v_{6}, v_{7}\right),\left(v_{7}, v_{8}\right)\right\} .
\end{aligned}
$$

a) Compute the stationary distribution α of $\left\{X_{n}\right\}_{n \geq 0}$.
b) Show that $\left\{X_{n}\right\}_{n \geq 0}$ with initial distribution α is reversible.
c) Consider the process $\left\{X_{n}\right\}_{n \geq 0}$ with initial distribution $\lambda=(0,1 / 4,0,1 / 4,0,1 / 4,0,1 / 4)$. Write a Matlab program for estimating $\mathbb{P}\left(X_{n} \in\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}\right)$ for each $n \in$ $\{1,2, \ldots, 10\}$ based on 50000 realizations using the standard estimator.

Exercise 3

Let $\left\{N_{t}\right\}_{t \geq 0}$ be a Poisson process with intensity λ. Let $\left\{\widetilde{N}_{t}\right\}_{t \geq 0}$ be a process with independent and stationary increments, such that for all $t \geq s$ it holds

$$
\mathbb{P}\left(\widetilde{N}_{t}-\widetilde{N}_{s}=k \mid N_{t}-N_{s}=n\right)=\binom{n}{k} p^{n-k}(1-p)^{k}
$$

for $n \geq k$ and

$$
\mathbb{P}\left(\widetilde{N}_{t}-\widetilde{N}_{s}=k \mid N_{t}-N_{s}=n\right)=0,
$$

for $n<k$. Moreover, let $\widetilde{N}_{0}=0$. Show that $\left\{\widetilde{N}_{t}\right\}_{t \geq 0}$ is a Poisson process with intensity $(1-p) \lambda$.

Exercise 4 (3)

Let $\left\{N_{t}\right\}_{t \geq 0}$ be a Poisson process with intensity $\lambda>0$. Calculate

$$
\mathbb{P}\left(N_{5}-N_{2}=2 \mid N_{4}=4\right) .
$$

Exercise $5 \quad(2+2+3)$
Let $\left\{N_{t}\right\}_{t \geq 0}$ be a Poisson process with intensity $\lambda=1$.
a) Write a Matlab program for simulating $\left\{N_{t}\right\}_{t \geq 0}$ using the definition of a Poisson process in terms of inter-arrival times. Simulate the process for $0 \leq t \leq 100$ and plot the realization of the path.
b) Write a Matlab program for estimating $\mathbb{E} N_{t}$ and $\operatorname{Var} N_{t}$ for $t \in\{1,2, \ldots, 10\}$. Use a sample size of 10000 .
c) Write a Matlab program for estimating $\mathbb{P}\left(N_{5}-N_{2}=2 \mid N_{4}=4\right)$. Do this by estimating $\mathbb{P}\left(N_{5}-N_{2}=2, N_{4}=4\right)$ and $\mathbb{P}\left(N_{4}=4\right)$ separately using the standard Monte Carlo estimator. Use a sample size of 50000 .

