

ulm university universität

universität **UUIM**

Dr. Tim Brereton Matthias Neumann

Summer Term 2014

Methods of Monte Carlo Simulation II Exercise Sheet 5

Deadline: June 5, 2014 at 10pm before the lecture

Exercise 1 (2+2)

Let $\{X_n\}_{n\geq 0}$ be a Markov chain with transition matrix $P = (P_{i,j})_{i,j=0,\dots,l}$ where

$$P_{i,j} = \begin{cases} \frac{l-i}{l} & \text{if } i < l \text{ and } j = i+1\\ \frac{i}{l} & \text{if } i > 0 \text{ and } j = i-1\\ 0 & \text{else.} \end{cases}$$

- a) Show that the stationary distribution $\alpha = (\alpha_0, \ldots, \alpha_l)$ of $\{X_n\}_{n \ge 0}$ is given by $\alpha_i = 2^{-l} \binom{l}{i}$ for all $i \in \{0, \ldots, l\}$.
- b) Show that $\{X_n\}_{n\geq 0}$ with initial distribution α is reversible.

Exercise 2 (2+2+2)

Let $\{X_n\}_{n\geq 0}$ be a random walk on the graph G = (V, E) with

$$V = \{v_1, \dots, v_8\}$$

$$E = \{(v_1, v_2), (v_1, v_3), (v_2, v_3), (v_2, v_8), (v_3, v_4), (v_3, v_7), (v_3, v_8), (v_4, v_5), (v_4, v_6), (v_5, v_6), (v_6, v_7), (v_7, v_8)\}.$$

- a) Compute the stationary distribution α of $\{X_n\}_{n\geq 0}$.
- b) Show that $\{X_n\}_{n\geq 0}$ with initial distribution α is reversible.
- c) Consider the process $\{X_n\}_{n\geq 0}$ with initial distribution $\lambda = (0, 1/4, 0, 1/4, 0, 1/4, 0, 1/4)$. Write a Matlab program for estimating $\mathbb{P}(X_n \in \{v_1, v_3, v_5, v_7\})$ for each $n \in \{1, 2, \ldots, 10\}$ based on 50000 realizations using the standard estimator.

Exercise 3 (3)

Let $\{N_t\}_{t\geq 0}$ be a Poisson process with intensity λ . Let $\{\widetilde{N}_t\}_{t\geq 0}$ be a process with independent and stationary increments, such that for all $t\geq s$ it holds

$$\mathbb{P}(\widetilde{N}_t - \widetilde{N}_s = k \mid N_t - N_s = n) = \binom{n}{k} p^{n-k} (1-p)^k,$$

for $n \ge k$ and

$$\mathbb{P}(\tilde{N}_t - \tilde{N}_s = k \mid N_t - N_s = n) = 0,$$

for n < k. Moreover, let $\widetilde{N}_0 = 0$. Show that $\{\widetilde{N}_t\}_{t \ge 0}$ is a Poisson process with intensity $(1-p)\lambda$.

Exercise 4 (3)

Let $\{N_t\}_{t\geq 0}$ be a Poisson process with intensity $\lambda > 0$. Calculate

$$\mathbb{P}(N_5 - N_2 = 2 \mid N_4 = 4).$$

Exercise 5 (2+2+3)

Let $\{N_t\}_{t\geq 0}$ be a Poisson process with intensity $\lambda = 1$.

- a) Write a Matlab program for simulating $\{N_t\}_{t\geq 0}$ using the definition of a Poisson process in terms of inter-arrival times. Simulate the process for $0 \leq t \leq 100$ and plot the realization of the path.
- b) Write a Matlab program for estimating $\mathbb{E}N_t$ and $\operatorname{Var}N_t$ for $t \in \{1, 2, \dots, 10\}$. Use a sample size of 10000.
- c) Write a Matlab program for estimating $\mathbb{P}(N_5 N_2 = 2 \mid N_4 = 4)$. Do this by estimating $\mathbb{P}(N_5 N_2 = 2, N_4 = 4)$ and $\mathbb{P}(N_4 = 4)$ separately using the standard Monte Carlo estimator. Use a sample size of 50000.