

Dr. Tim Brereton Matthias Neumann

Summer Term 2014

## Methods of Monte Carlo Simulation II Exercise Sheet 6

Deadline: June 12, 2014 at 12pm before the exercises Please hand in a printed version of your Matlab code and the output of the programs

**Exercise 1** (2+2+3+3)

Let  $\{N_t\}_{t\geq 0}$  be an inhomogenous Poisson process with intensity function  $\lambda(t)=e^{-\theta t}, \theta>0$ .

- a) Calculate  $\mathbb{P}(N_t N_{t-1} > 0)$  for arbitrary  $t \ge 1$ .
- b) Use the Borel-Cantelli-Lemma in oder to show that

$$N_{\infty} = \lim_{t \to \infty} N_t \stackrel{\text{a.s.}}{<} \infty.$$

- c) Let  $\{T_n\}_{n=1}^{N_{\infty}}$  be the unordered set of arrival times of  $\{N_t\}_{t\geq 0}$ . Show that under the under the condition  $N_{\infty}=k$  the random variables  $\{T_n\}_{n=1}^{N_{\infty}}$  are i.i.d with  $T_1 \sim \text{Exp}(\theta)$ .
- d) Let now  $\theta = 1/30$ . Write a Matlab program for simulating  $\{N_t\}_{t\geq 0}$  on  $[0,\infty)$ . Plot the realization of the path.

Exercise 2 (2+2)

Suppose that cars arrive at a restaurant in accordance with a Poisson process with rate  $\lambda = 10$  per hour. The number of people in each car is independent and takes values 1,2,3,4,5 with respective probabilities 1/3, 1/2, 1/12, 1/24, 1/24. Every thousandth guest of the restaurant receives a free meal.

- a) Write a Matlab program for estimating the expected time until the first free meal is given. Use a sample size of 1000.
- b) The owner of the restaurant comes H hours after the opening, where  $H \sim U(0,300)$ . Write a Matlab program for estimating the expected time between the arrival of the owner and the time that the next free meal is given. Use a sample size of 1000.