Methods of Monte Carlo Simulation II
Exercise Sheet 7

Deadline: June 26, 2014 at 1pm before the exercises
Please hand in a printed version of your Matlab code and the output of the programs

Exercise 1 (2+2+2)

Suppose you have \(n \) dogs. Each dog has its own kennel. If one of the dogs goes into its dog kennel it remains there for \(A_1 \) hours, where \(A_1 \sim \text{Exp}(\lambda) \) with \(\lambda > 0 \). If a dog has left its kennel, it returns to it after \(A_2 \) hours, where \(A_2 \sim \text{Exp}(\mu) \) with \(\mu > 0 \). Let all dogs be in their kennels at time \(t = 0 \). The number of dogs outside their kennels at time \(t \), denoted by \(\{X_t\}_{t \geq 0} \), defines a continuous time Markov chain.

a) Let \(\tau \) be the time when the first dog leaves its kennel. Determine the distribution of \(\tau \).
b) Let \(n = 2 \). Determine the generator \(Q \) of the continuous time Markov chain.
c) Let \(n = 2 \). Determine the stationary distribution of this process.

Exercise 2 (3+2)

Consider a population starting with 5 individuals. New individuals are born with rate \(1/2 \) and die with rate \(1/4 \). With rate \(1/100 \), an epidemic plague leads to the death of many individuals. In this case, each individual dies independently of the others with probability \(1/2 \). Let \(\{X_t\}_{t \geq 0} \) be the process describing the number of individuals in the population at time \(t \).

a) Write a Matlab program for simulating \(\{X_t\}_{t \geq 0} \) for \(t \in [0, 1000] \). Plot one realization of this process.
b) Write a Matlab program for estimating the expected time until the population consists of more than 50 individuals. Use a sample size of 10000.

Exercise 3 (2)

Let \((X_1, \ldots, X_n)\) be multivariate normal. Show that \(X_1, \ldots, X_n\) are independent if and only if \(\text{Cov}(X_i, X_j) = 0 \) holds for all \(1 \leq i < j \leq n \).