

ulm university universität

Dr. Tim Brereton Matthias Neumann

Summer Term 2014

Methods of Monte Carlo Simulation II Exercise Sheet 8

Deadline: July 3, 2014 at 1pm before the exercises Please hand in a printed version of your Matlab code and the output of the programs

Exercise 1 (1+2+2+2)

Let $\{Z_n\}_{n=1}^{\infty}$ be a sequence of i.i.d. random variables such that $Z_1 \sim N(0,1)$. Define the stochastic process $\{X_n\}_{n=1}^{\infty}$ by

$$X_n = \frac{1}{3} \left(Z_n + Z_{n+1} + Z_{n+2} \right), \quad n \ge 2..$$

- a) Show that $\{X_n\}_{n=1}^{\infty}$ is a Gaussian process.
- b) Let $k, l \ge 1$. Calculate Cov (X_k, X_l) .
- c) Write a Matlab program for simulating $\{X_n\}_{n=1}^{100}$. Plot one realization.
- d) Estimate $\mathbb{P}(|X_1 X_2| < |X_{100} X_{100000}|)$ by the standard Monte Carlo estimator. Use a sample size of 20000.

Exercise 2 (1+3+2+2)

Let $\{Z_n\}_{n=1}^{\infty}$ be a sequence of i.i.d. random variables such that $Z_1 \sim N(0,1)$. Define the stochastic process $\{X_n\}_{n=1}^{\infty}$ by $X_1 = Z_1$ and

$$X_n = \frac{1}{2}X_{n-1} + Z_n, \quad n \ge 2.$$

- a) Compute $\mathbb{E}X_n$ for arbitrary $n \ge 1$.
- b) Let $k, l \ge 1$. Calculate Cov (X_k, X_l) .
- c) Write a Matlab program for simulating $\{X_n\}_{n=1}^{100}$ by simulating a multivariate normal distributed random vector. Plot one realization.
- d) Find another way for simulating $\{X_n\}_{n=1}^{100}$. Implement the simulation in Matlab and plot one realization.