Methods of Monte Carlo Simulation II Solution to Exercise Sheet 1

Exercise 1 (3)

Consider two gamblers, A and B, playing a game where A wins with probability $q \in(0,1)$ and B wins with probability $1-q$. Gambler A starts with s_{A} Euro and B starts with s_{B} Euro. The gambler who wins gets one Euro from his opponent. They repeat the game infinitely many times. Suppose that negative capital of one of the gamblers is possible.
Let $\left\{X_{n}\right\}_{n \geq 0}$ be the stochastic process where X_{n} denotes the capital in Euro of gambler A after n games. Show that $\left\{X_{n}\right\}_{n \geq 0}$ is a random walk.

Solution:

According to Definition 1.2 .2 it is to show that $\left\{X_{n}\right\}_{n \geq 0}$ satisfies the recurrence

$$
\begin{equation*}
X_{n+1}=X_{n}+\left(2 Y_{n+1}-1\right) \tag{1}
\end{equation*}
$$

for each $n \geq 0$, where $\left\{Y_{n}\right\}_{n \geq 1}$ is a Bernoulli process. Since Gambler A wins with probability q, the process $\left\{X_{n}\right\}_{n \geq 0}$ increases in one step by one with probability q. In the other case $\left\{X_{n}\right\}_{n \geq 0}$ decreases by one. This occurs with probability $1-q$. Thus it holds

$$
\begin{equation*}
X_{n+1}=X_{n}+Z_{n+1} \tag{2}
\end{equation*}
$$

for each $n \geq 0$, where $\left\{Z_{n}\right\}_{n \geq 1}$ is a sequence of i.i.d. random variables with $\mathbb{P}\left(Z_{1}=-1\right)=$ $1-q$ and $\mathbb{P}\left(Z_{1}=1\right)=q$. Now we define the process $\left\{Y_{n}\right\}_{n \geq 1}$ by

$$
\begin{equation*}
Y_{n}=0.5 Z_{n}+0.5 \tag{3}
\end{equation*}
$$

for each $n \geq 1$. Because $\left\{Z_{n}\right\}_{n>1}$ is i.i.d., the sequence $\left\{Y_{n}\right\}_{n>1}$ is i.i.d., too. Moreover, it holds $\mathbb{P}\left(Y_{1}=0\right)=\mathbb{P}\left(0.5 Z_{1}+0.5=0\right)=\mathbb{P}\left(Z_{1}=-1\right)=1-q$ and $\mathbb{P}\left(Y_{1}=1\right)=\mathbb{P}\left(0.5 Z_{1}+0.5=\right.$ $1)=\mathbb{P}\left(Z_{1}=1\right)=q$. Thus $\left\{Y_{n}\right\}_{n \geq 1}$ is a Bernoulli process. By (3) we can substitute Z_{n+1} in (2) by $2 Y_{n+1}-1$ which leads to (1). Thus $\left\{X_{n}\right\}_{n \geq 0}$ is a random walk which is uniquely defined by the initial condition $X_{0}=s_{A}$.

Exercise $2 \quad(3+3+4)$
Consider the case of Exercise 1 with $q=0.6, s_{A}=6, s_{B}=4$ and let $\left\{X_{n}\right\}_{n \geq 0}$ be defined as above.
a) Write a Matlab program for simulating the first N values of $\left\{X_{n}\right\}_{n \geq 0}$, i.e. X_{1}, \ldots, X_{N}. Plot one realization for each $N \in\{10,100,10000\}$.
b) Let $\tau=\inf \left\{n \geq 0: X_{n} \in\left\{0, s_{A}+s_{B}\right\}\right\}$ be the random number of games after which the game ends if negative capital is not possible. Write a Matlab program for estimating $\mathbb{P}(\tau=8)$ based on 1000 realizations of $\left\{X_{n}\right\}_{n \geq 0}$.
Hint: For estimating $\mathbb{P}(\tau=8)$ simulate 1000 realizations $\left\{X_{n}^{(1)}\right\}_{n \geq 0}, \ldots,\left\{X_{n}^{(1000)}\right\}_{n \geq 0}$ of $\left\{X_{n}\right\}_{n \geq 0}$ and compute the corresponding values of τ denoted by $\tau^{(1)}, \ldots, \tau^{(1000)}$. Then, estimate the probability $\mathbb{P}(\tau=8)$ by

$$
\widehat{p_{8}}=\frac{1}{1000} \sum_{i=1}^{1000} \mathbb{I}\left(\tau^{(i)}=8\right)
$$

c) Calculate $\mathbb{P}\left(\inf \left\{n \geq 0: X_{n} \geq 8\right\} \leq 4\right)$ and write a Matlab programm to estimate $\mathbb{P}\left(\inf \left\{n \geq 0: X_{n} \geq 8\right\} \leq 4\right)$ based on 1000 realizations of $\left\{X_{n}\right\}_{n \geq 0}$. Proceed analogously to part b).

Solution: a) The function which simulates the first N values of a random walk with parameter q and initial condition $X_{0}=x_{0}$:
function $\mathrm{X}=\operatorname{RandomWalk}\left(\mathrm{N}, \mathrm{q}, \mathrm{x} _0\right)$
\% Simulating the Bernoulli process Y
$\mathrm{Y}=(\boldsymbol{\operatorname { r a n d }}(\mathrm{N}, 1)<=\mathrm{q})$;
\% Generating the random walk
$\mathrm{X}=\mathrm{x} _0+\operatorname{cumsum}((2 * \mathrm{Y}-1))$;
end

Figure 1: Plots of realizations. From to top to bottom: $N=10, N=100, N=10000$. The red line represents $\mathbb{E} X_{n}=6+0.2 n$.

The main program for simulating $\left\{X_{n}\right\}_{n \geq 0}$ with $N \in\{10,100,10000\}, X_{0}=6$ and $q=0.6$:

```
% Exercise 2
% a)
close all;
clf;
N = [lllll
for i = 1:3
    % Simulate and plot a random walk
    X = RandomWalk(N(i), 0.5, 6);
    subplot(3,1,i);
    stairs(0:N(i)-1,X);
    % The line of the expected values is added to the plot
    hold on;
    t = 0:N(i) - 1;
    plot(t, 6+0.2*t, 'red');
    axis([0 N(i) min(X)-1 max(X)+1]);
end
```

b) The program for estimating $\widehat{p_{8}}$:

```
% b)
tau = zeros(1000,1);
for i=1:1000
    cnt = 0;
    X = 6;
    % Simulating the random walk until X_n=0 or X_n=s_A+s_B=10
    while( }\mp@subsup{\textrm{X}}{}{~}=10&& \mp@subsup{X}{}{~}=0
        X = X + 2*(rand <= 0.6) - 1;
        cnt = cnt + 1;
    end
    tau(i) = cnt;
end
pHat = sum((tau = 8))/1000;
fprintf('The estimated value is %f\n', pHat);
Output:
```

The estimated value is 0.117000
With 100000 realizations of $\left\{X_{n}\right\}_{n \geq 0}$ the variance of the estimator is reduced and 0.11 was obtained as estimated value for p_{8}.
c) Using Lemma 1.2.5 and the result about the distribution of X_{n} from Section 1.2.4 we
get

$$
\begin{aligned}
\mathbb{P}\left(\inf \left\{n \geq 0: X_{n} \geq 8\right\} \leq 4\right) & =\mathbb{P}\left(\inf \left\{n \geq 0: X_{n}-6 \in\{2,3, \ldots\}\right\} \leq 4\right) \\
& =\frac{2}{2} \mathbb{P}\left(X_{2}-6=2\right)+\frac{2}{4} \mathbb{P}\left(X_{4}-6=2\right) \\
& =\binom{2}{2} 0.6^{2}+0.5\binom{4}{3} 0.6^{3} \cdot 0.4 \\
& =0.36+0.1728=0.5328 .
\end{aligned}
$$

By the following Matlab programm $\mathbb{P}\left(\inf \left\{n \geq 0: X_{n} \geq 8\right\} \leq 4\right)$ is estimated:

```
% c)
tau = zeros(1000,1);
for i=1:1000
    cnt = 0;
    X = 6;
    % Simulating the random walk until X_n=8
    while(X ~ = 8)
        X = X + 2*(rand <= 0.6) - 1;
        cnt = cnt + 1;
    end
    tau(i) = cnt;
end
pHat = sum((tau <= 4))/1000;
fprintf('The estimated value is %f\n', pHat);
Output:
```

The estimated value is 0.540000

