
1 Importance Sampling and Extending the Ran-
dom Walk Model

1.1 Sums of Independent Random Variables

If we consider a random walk with x0 = 0, we can define it by

Xn =

n∑
i=1

Zi,

where the {Zi}i≥1 are i.i.d. random variables with

P(Z1 = 1) = 1− P(Z1 = −1) = p.

If we replace the {Zi}i≥1 with an arbitrary sequence of independent random
variables, {Yi}i≥1 we are in the setting of sums of independent random variables.
That is, we consider

Sn =

n∑
i=1

Yi.

Now, in the case of a random walk, which is a sum of the {Zi}i≥1 random
variables, we know the distribution of Sn (we calculated this earlier). However,
this is not always the case. Normally, in order to find the distribution of a sum
of n random variables, we have to calculate an n-fold convolution or use either
moment generating functions or characteristic functions and hope that things
work out nicely.

Recall, given two independent random variables, X and Y , the convolution
of the distributions of X and Y is given by

P(X + Y = z) =

∞∑
x=−∞

P(X = x)P(Y = z − x)

=

∞∑
y=−∞

P(X = z − y)P(Y = y)

in the discrete case and the convolution, h, of the density of X, f , and the
density of Y , g, is given by

h(z) = (f ∗ g)(z) =

∫ ∞
−∞

f(x)g(z − x)dx =

∫ ∞
−∞

f(z − y)g(y)dy

in the continuous case. It is easy to see that the calculations can be pretty
messy if lots of variables with different distributions are involved.

Sometimes, things are nice. For example, the sum of independent normal
random variables is normally distributed and the sum of i.i.d. exponential ran-
dom variables is distributed according to a special case of the gamma distri-
bution (called the Erlang distribution). But most things are not so nice. For
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example, try to work out the distribution of n exponential random variables
with parameters λ1, . . . , λn.

There are various tools in mathematics that help us deal with sums of in-
dependent random variables. For example, we have the Lindeberg central limit
theorem and a version of the strong law of large numbers. However, these do
not answer all the questions we might reasonably ask and there are lots of ran-
dom variables that do not satisfy the technical conditions of these theorems.
Simulation is a useful tool for solving problems in these settings.

We will consider a couple of examples that use normal random variables.
Recall that if Z ∼ N(0, 1) then X = µ + σZ ∼ N(µ, σ2). This means we can
simulate a normal random variable with mean µ and variance σ2 in Matlab
using the command

X = mu + sqrt(sigma_sqr) * randn;

Another new concept in the examples is relative error.

Definition 1.1 (Relative Error). The relative error of an estimator ̂̀ is defined
by

RE =

√
Var(̂̀)
`

.

Basically, the relative error tell us the size of our estimator’s error as a
percentage of the thing we are tying to estimate (i.e., if we have a relative error
of 0.01, that means that the standard deviation of our estimator is about 1
percent of `). The relative error is often a more meaningful measure of error in
settings where the thing we are trying to estimate, `, is small. In practice, the
relative error needs to be estimated.

Example 1.2 (Sums of log-normal random variables). Consider a portfolio
consisting of n stocks (which, for some reason, are independent of one an-
other). At the start of the year, the stocks all have value 1. The changes in
value of these stocks over a year are given by the random variables V1, . . . , Vn,
which are log-normal random variables, i.e., V1 = eZ1 , ., Vn = eZn with Z1 ∼
N(µ1, σ

2
1), · · · , Z1 ∼ N(µn, σ

2
n). It is not so straightforward to calculate the

distribution of Sn = V1 + · · ·+ Vn.
If n = 5, with µ = (−0.1, 0.2,−0.3, 0.1, 0) and σ2 = (0.3, 0.3, 0.3, 0.2, 0.2),

what is the probability that the portfolio is worth more than 20 at the end
of the year? It is straightforward to use Monte Carlo to get an estimate of
` = P(Sn > 20). Here, we check that the mean and variance of our simulation
output correspond to the theoretical mean and variance (it never hurts to check
things seem to be working properly). The mean of a log-normal random variable
is given by exp{µ+σ2/2} and the variance is given by (exp{σ2}−1)exp{2µ+σ2}.
In addition, we estimate E [max(V1, . . . , V5) |S5 > 20] (that is, the average value
of the largest portfolio component when the portfolio has a value bigger than
20) and E [S5 |S5 > 20].
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Listing 1: Matlab code

1 N = 5*10^7; S = zeros(N,1); threshold = 20;

2 V_max = zeros(N,1); V_mean = zeros(N,1);

3

4 mu = [-0.1 0.2 -0.3 0.1 0]; sigma_sqr = [.3 .3 .3 .2 .2];

5

6 for i = 1:N

7 Z = mu + sqrt(sigma_sqr) .* randn(1,5);

8 V = exp(Z);

9 V_max(i) = max(V);

10 S(i) = sum(V);

11 end

12

13 est_mean = mean(S)

14 actual_mean = sum(exp(mu + sigma_sqr/2))

15

16 est_var = var(S)

17 actual_var = sum((exp(sigma_sqr) - 1) .* exp(2 * mu + sigma_sqr))

18

19 ell_est = mean(S>threshold)

20 ell_RE = std(S>threshold) / (ell_est * sqrt(N))

21

22 [event_occurs_index dummy_var] = find(S > threshold);

23 avg_max_v = mean(V_max(event_occurs_index))

24 avg_S = mean(S(event_occurs_index))

Running this one time produced the following output

est_mean = 5.6576

actual_mean = 5.6576

est_var = 1.9500

actual_var = 1.9511

ell_est = 2.3800e-06

ell_RE = 0.0917

avg_max_v = 15.9229

avg_S = 21.5756

Notice that, on average, the rare event seems to be caused by a single portfo-
lio component taking a very large value (rather than all the portfolio components
taking larger than usual values). This is typical of a class of random variables
called heavy tailed random variables, of which the log-normal distribution is an
example.

Example 1.3 (A gambler’s ruin problem). Consider an incompetent business-
man. His company starts off with AC10000 but makes a loss, on average, each day.
More precisely, the profit or loss on the ith day is given by Yi ∼ N(−20, 10000).
If his company can get AC11000 in the bank, he is able to sell his company to a
competitor. If his company’s bank account drops below AC0 he goes bankrupt.
What is the probability that he is able to sell the company?
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We can formulate this as a problem about hitting times. Define Sn =∑n
i=1 Yi, as the company bank account (minus the initial AC10000) on the nth

day. Define the time at which he can sell by

τS = inf{n ≥ 1 : Sn ≥ 1000}

and the time at which he can go bankrupt by

τB = inf{n ≥ 1 : Sn ≤ −10000}.

We want to know ` = P(τS < τB). This is easy to simulate, we just increase
n by one until either Sn ≤ −10000 or Sn ≥ 1000. We might as well find out
E [τS | τS < τB ] and E [τB | τB < τS ] while we are doing that.

Listing 2: Matlab code

1 N = 10^7; sold = zeros(N,1); days = zeros(N,1);

2 mu = -20; sigma_sqr = 10000; sigma = sqrt(sigma_sqr);

3 up = 1000; low = -10000;

4

5 for i = 1:N

6 S = 0; n = 0;

7 while S > low && S< up

8 S = S + (mu + sigma * randn);

9 n = n + 1;

10 end

11 sold(i) = S > up;

12 days(i) = n;

13 end

14

15 ell_est = mean(sold)

16 est_RE = sqrt(sold) / (sqrt(N)*ell_est)

17

18 [event_occurs_index dummy_var] = find(sold == 1);

19 [event_does_not_occur_index dummy_var] = find(sold == 0);

20

21 avg_days_if_sold = mean(days(event_occurs_index))

22 avg_days_if_bankrupt = mean(days(event_does_not_occur_index))

Running this one time produced the following output

ell_est = 0.0145

ell_RE = 0.0026

avg_days_if_sold = 52.9701

avg_days_if_bankrupt = 501.5879

1.2 Importance Sampling

In examples 1.2 and 1.3, the probabilities we were interested in were quite
small. Estimating such quantities is usually difficult. If you think about it, if
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something only happens on average once every 106 times, then you will need
a pretty big sample size to get many occurrences of that event. We can be a
bit more precise about this. Consider the relative error of the estimator ̂̀ for
` = P(X > γ) = EI(X > γ). This is of the form

RE =

√
P(X > γ) (1− P(X > γ))

P(X > γ)
√
N

.

So, for a fixed RE, we need

√
N =

√
P(X > γ) (1− P(X > γ))

P(X > γ)RE
⇒ N =

1− P(X > γ)

P(X > γ)RE2 .

So N = O(1/P(X > γ)) which means N gets big very quickly as ` = P(X >
γ) → 0. This is a big problem in areas where events with small probabilities
are important. There are lots of fields where such events are important: for
example, physics, finance, telecommunication, nuclear engineering, chemistry
and biology. One of the most effective methods of estimating these probabilities
is called importance sampling.

In the case of sums of independent random variables, the basic idea is to
change the distributions of the random variables so that the event we are inter-
ested in is more likely to occur. Of course, if we do this, we will have a biased
estimator. So, we need a way to correct for this bias. It is easiest to describe
these things using continuous random variables and densities but, as we will see
in the examples, everything works for discrete random variables as well.

Consider a random variable X taking values in R with density f . Suppose
we wish to estimate ` = ES(X). Note that we can write

ES(X) =

∫ ∞
−∞

S(x) f(x) dx.

Now, this suggests the natural estimator

̂̀=
1

N

N∑
i=1

S(X(i)),

where X(1), . . . , X(N) are i.i.d. draws from the density f . Now, suppose the
expectation of S(X) is most influenced by a subset of values with low probability.
For example, if S(X) = I(X > γ) and P(X > γ) is small, then this set of values
would be {x ∈ X : S(x) > γ}. We want to find a way to make this ‘important’
set of values happen more often. This is the idea of importance sampling. The
idea is to sample {X(i)}Ni=1 according to another density, g, that ascribes much
higher probability to the important set. Observe that, given a density g such
that g(x) = 0 ⇒ f(x)S(x) = 0, and being explicit about the density used to
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calculate the expectation,

EfS(X) =

∫ ∞
−∞

S(x) f(x) dx =

∫ ∞
−∞

S(x)
g(x)

g(x)
f(x) dx

=

∫ ∞
−∞

S(x)
f(x)

g(x)
g(x) dx = Eg

f(X)

g(X)
S(X).

We call f(x)/g(x) the likelihood ratio. This suggests, immediately, the impor-
tance sampling estimator

Definition 1.4 (The Importance Sampling Estimator). The importance sam-

pling estimator, ̂̀IS, of ` = ES(X) is given by

̂̀
IS =

1

N

N∑
i=1

f(X(i))

g(X(i))
S(X(i)),

where the {X(i)}Ni=1 are i.i.d. draws from the importance sampling density g.

Because we wish to use this estimator for variance reduction, it makes sense
for us to calculate its variance.

Lemma 1.5. The variance of the importance sampling estimator, ̂̀IS, is given
by

Var(̂̀IS) =
1

N

(
Ef
[
f(X)

g(X)
S(X)2

]
− `2

)
.

Proof. We have that

Var(̂̀IS) =
1

N
Var

(
f(X)

g(X)
S(X)

)
=

1

N

(
Eg
[
f(X)2

g(X)2
S(X)2

]
−
(
Eg
f(X)

g(X)
S(X)

)2
)

=
1

N

([∫ ∞
−∞

f(x)2

g(x)2
S(x)2 g(x) dx

]
− `2

)
=

1

N

([∫ ∞
−∞

f(x)

g(x)
S(x)2 f(x) dx

]
− `2

)
=

1

N

(
Ef
[
f(X)

g(X)
S(X)2

]
− `2

)

Comparing Var(̂̀), the variance of the normal Monte Carlo estimator, to

Var(̂̀IS), the variance of the importance sampling estimator, we see that

Var(̂̀IS) < Var(̂̀)⇔ Ef
[
f(X)

g(X)
S(X)2

]
< EfS(X)2.
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When we are estimating probabilities, S(x) is an indicator function. For
example, it could be S(x) = I(x > γ). Then,

ES(X) = P(X > γ) = EI(X > γ) = EI(X > γ)2 = ES(X)2,

so the condition above reduces to requiring that Ef
[
f(X)
g(X)S(X)2

]
< `.

The above technology is easily combined to problems involving discrete ran-
dom variables. Just replace integrals with sums and densities with probability
mass functions.

Example 1.6 (Importance sampling with a normal random variable). Consider
the problem of estimating ` = P(X > γ), where X ∼ N(0, 1). If γ is big, for
example γ = 5, then ` is very small. The standard estimator of ` = P(X > γ)
is ̂̀=

1

N

N∑
i=1

I
(
X(i) > γ

)
,

where the {X(i)}Ni=1 are i.i.d. N(0, 1) random variables. This is not a good
estimator for large γ. We can code this as follows.

Listing 3: Matlab code

1 gamma = 5; N = 10^7;

2 X = randn(N,1);

3 ell_est = mean(X > gamma)

4 RE_est = std(X > gamma) / (sqrt(N) * ell_est)

For γ = 5 with a sample size of 107, an estimate of the probability is 2×10−7 and
an estimate of the relative error is 0.7071. So, this problem is a good candidate
for importance sampling. An obvious choice of an importance sampling density
is a normal density with variance 1 but with mean γ. The likelihood ratio
f(x)/g(x) is given by

f(x)

g(x)
=

(√
2π
)−1

exp{− 1
2x

2}(√
2π
)−1

exp{− 1
2 (x− γ)2}

= exp

{
γ2

2
− xγ

}
.

Thus, the estimator will be of the form

̂̀
IS =

1

N

N∑
i=1

exp

{
γ2

2
−X(i)γ

}
I
(
X(i) > γ

)
,

where the {X(i)}Ni=1 are i.i.d. N(γ, 1) random variables. The code for this
follows.

Listing 4: Matlab code

1 gamma = 5; N = 10^7;

2 X = gamma + randn(N,1);

3 values = exp(gamma^2 / 2 - X*gamma) .* (X > gamma);

4 ell_est = mean(values)

5 RE_est = std(values) / (sqrt(N) * ell_est)

7



For γ = 5 with a sample size of 107 an estimate of the probability is 2.87×10−7

and an estimate of the relative error is 7.53×10−4. We can check the true value
in this case using the Matlab command

1 - normcdf(5)

This gives a value of 2.87 × 10−7 which is more or less identical to the value
returned by our estimator.

If we have a sum of n independent variables, X1, . . . , Xn, with densities
f1, . . . , fn, we can apply importance sampling using densities g1, . . . , gn. We
would then have a likelihood ratio of the form

n∏
i=1

fi(x)

gi(x)
.

Everything then proceeds as before.

Example 1.7 (A rare event for a random walk). Given a random walk, {Xn}n≥0,
with x0 = 0 and p = 0.4, what is ` = P(X50 > 15)? We can estimate this in
Matlab using standard Monte Carlo.

Listing 5: Matlab code

1 N = 10^5; threshold = 15;

2 n = 50; p = 0.4; X_0 = 0;

3 X_50 = zeros(N,1);

4

5 for i = 1:N

6 X = X_0;

7 for j = 1:n

8 Y = rand <= p;

9 X = X + 2*Y - 1;

10 end

11 X_50(i) = X;

12 end

13 ell_est = mean(X_50 > threshold)

14 RE_est = std(X_50 > threshold) / (sqrt(N) * ell_est)

Running this program once, we get an estimated probability of 1.2 × 10−4

and an estimated relative error of 0.29. This is not so great, so we can try using
importance sampling. A good first try might be to simulate a random walk, as
before, but with another parameter, q = 0.65. If we write

Xn =

n∑
i=1

Zi,

then, the original random walk is simulated by generating the {Zi}i≥1 according
to the probability mass function p I(Z = 1) + (1−p) I(Z = −1). Generating the
new random walk means generating the {Zi}i≥1 according to the probability

8



mass function q I(Z = 1) + (1− q) I(Z = −1). This then gives a likelihood ratio
of the form

n∏
i=1

p I(Zi = 1) + (1− p) I(Zi = −1)

q I(Zi = 1) + (1− q) I(Zi = −1)
=

n∏
i=1

[
p

q
I(Zi = 1) +

1− p
1− q

I(Zi = −1)

]
.

We can implement the estimator in Matlab as follows.

Listing 6: Matlab code

1 N = 10^5; threshold = 15;

2 n = 50; p = 0.4; X_0 = 0; q = 0.65;

3 X_50 = zeros(N,1); LRs = zeros(N,1);

4

5 for i = 1:N

6 X = X_0; LR = 1;

7 for j = 1:n

8 Y = rand <= q;

9 LR = LR * (p/q * (Y == 1) + (1-p) / (1 - q) * (Y == 0));

10 X = X + 2*Y - 1;

11 end

12 LRs(i) = LR;

13 X_50(i) = X;

14 end

15 ell_est = mean(LRs .* (X_50 > threshold))

16 RE_est = std(LRs .* (X_50 > threshold)) / (sqrt(N) * ell_est)

Running this program, we get an estimated probability of 1.81 × 10−4 and a
relative error of 0.0059. We can check this makes sense by using the standard
Monte Carlo estimator with a much bigger sample size. Using a sample size of
N = 108, we get an estimate of 1.81×10−4, confirming the importance sampling
gives the right result.

1.2.1 Rules of Thumb for Effective Importance Sampling

Recall the definition of a moment generating function.

Definition 1.8 (Moment Generating Function). We define the moment gener-
ating function of a random variable X by

M(θ) = EeθX .

For θ = 0, M(θ) = 1. However, for other values of θ, it may not be the case
that M(θ) <∞. In order for M(θ) to be finite for some θ 6= 0, the probability of
X taking very large (or small) values has to go to zero exponentially fast. This
leads to the definition of light-tailed random variables. Usually, people assume
that light-tailed means right light-tailed.

Definition 1.9 (Light-tailed random variable). We say a random variable X
is (right) light-tailed if M(θ) <∞ for some θ > 0. We say X is left light-tailed
if M(θ) <∞ for some θ < 0.
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The rules of thumb, which only apply when dealing with light-tailed random
variables, are as follows.

• For sums of i.i.d. random variables, e.g., P(X1 + · · ·+Xn > γ) choose the
importance sampling density, g, so that EgX1 = γ/n.

• For stopping time problems, e.g., P(τA < τB) or P(τA < ∞), where the
process is drifting away from A, the set of interest, choose g so that the
drift of the stochastic process is reversed. For example, if A = {10, 11, . . .}
and Sn =

∑n
i=1 Yi, with Yi ∼ N(−1, 1), then choose g so that EgZ1 = 1.
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