
1 Weighted Importance Sampling

If is often the case that we wish to estimate ℓ = EfS(X) without knowing
everything about the density f . For example, a density can be written as

f(x) =
h(x)

Z
,

where Z is the normalizing constant (that is Z =
∫
f(x) dx). In many realistic

applications, we do not know Z, even if we do know h and have a way of
sampling from f (it is often possible to sample from a density without knowing
its normalizing constant). An obvious problem, then, is how we should carry
out importance sampling in such a setting.

Weighted importance sampling is one way of addressing this problem. The
normal importance sampling estimator is of the form

ℓ̂IS =
1

N

N∑

i=1

f(X(i))

g(X(i))
S(X(i)),

where X(1), . . . ,X(N) is an i.i.d. sample from g. This returns a sample mean
that is weighted by the likelihood ratios

f(X(1))

g(X(1))
, . . . ,

f(X(N))

g(X(N))
.

The idea of weighted importance sampling is to use another weight, which is of
the form

W (x) =
h(x)

g(x)
.

Instead of using the standard importance sampling estimator, we now have to
use an estimator of the form

ℓ̂WIS =
1
N

∑N

i=1 W
(
X(i)

)
S
(
X(i)

)

1
N

∑N

i=1 W
(
X(i)

) ,

with X(1), . . . ,X(N) an i.i.d. sample from g.
Now,

EgW (X)S(X) = Eg

h(X)

g(X)
S(X) =

∫
h(x)

g(x)
S(x)g(x) dx

= Z

∫
h(x)

Z
S(x) dx = Z EfS(X).

Likewise,

EgW (X) = Eg

h(X)

g(X)
=

∫
h(x)

g(x)
g(x) dx = Z

∫
h(x)

Z
dx = Z.

1

Thus, by the strong law of large numbers, we get in the limit that

lim
N→∞

1
N

∑N

i=1 W
(
X(i)

)
S
(
X(i)

)

1
N

∑N

i=1 W
(
X(i)

) →
Z EfS(X)

Z
= EfS(X).

Note that this estimator is biased. However, the bias is O(1/n), so it is not too
bad in practice (and we don’t always have an alternative).

2 Sequential Importance Sampling

So far, when we have considered a problem like ℓ = P(X10 > 5), we have con-
sidered a process that can be written as a sum of independent random variables.
For example

Xn =

n∑

i=1

Yi,

where Y1, . . . , Yn are i.i.d. draws from f . In this case, we can write

ℓ̂IS =
1

N

N∑

i=1




10∏

j=1

f(Y
(i)
j)

g(Y
(i)
j)


 I




10∑

j=1

Y
(i)
j > 5


 .

One advantage of this formulation is that if we can sample Y1, calculate the
likelihood ratio, then sample Y2, update the likelihood ratio (by multiplying by
f(Y2)/g(Y2)), and so on. In particular, if we wish to simulate a process until
a stopping time, then we can simply stop when this stopping time is reached,
without having to worry about how to calculate the joint density afterwards.
When the {Yj}

n
j=1 are dependent, things are a little more complicated. Con-

tinuing with our ℓ = P(X10 > 5) example, in the case of dependent random
variables, we would write

ℓ̂IS =
1

N

N∑

i=1

f(Y
(i)
1 , . . . , Y

(i)
n)

g(Y
(i)
1 , . . . , Y

(i)
n)

I




10∑

j=1

Y
(i)
j > 5


 .

However, we can often write this in a more convenient form. Note that,

f(y1, . . . , yn) = f(y1)f(y2 | y1) · · · f(yn | y1, . . . , yn−1),

or, in Bayesian notation (which makes things a bit more compact),

f(y1:n) = f(y1)f(y2 | y1) · · · f(yn | y1:n−1)

Likewise, we can write

g(y1:n) = g(y1)g(y2 | y1) · · · g(yn | y1:n−1).

2

If we know these conditional densities, then we can write the likelihood ratio in
the form

Wn(y1:n) =
f(y1)f(y2 | y1) · · · f(yn | y1:n−1)

g(y1)g(y2 | y1) · · · g(yn | y1:n−1)
.

If we write,

W1(y1) =
f(y1)

g(y1)
,

then

W2(y1:2) =
f(y2 | y1)

g(y2 | y1)

f(y1)

g(y1)
=

f(y2 | y1)

g(y2 | y1)
W1(y1),

and, more generally,

Wn(y1:n) =
f(yn | y1:n−1)

g(yn | y1:n−1)
Wn−1(y1:n−1).

In cases where the Markov property holds,

Wn(y1:n) =
f(yn | yn−1)

g(yn | yn−1)
Wn−1(y1:n−1).

Using this formulation, we can update until a stopping time, then stop updat-
ing. This formulation also allows for sophisticated methods, such as those were
certain low probability paths (i.e., paths with very small weights) are randomly
killed.

3 Self-Avoiding Random Walks

Consider a random walk on a 2d lattice. That is, a Markov chain, {Xn}n≥0,
on Z× Z with X0 = 0 and transition probabilities given by

P (Xn = (k, l) |Xn−1 = (i, j)) =

{
1/4 , if |k − i|+ |l − j| = 1

0 , otherwise
.

Self-avoiding random walks are simply random walks that do not hit them-
selves.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 3.1: Two realizations of a self-avoiding random walk with 7 steps.

3

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 3.2: Two realizations of a self-avoiding random walk with 20 steps.

Self avoiding walks are useful as simple models of objects like polymers.
They capture some fundamental behavior of strings of molecules that cannot
be too close to one another, but otherwise have minimal interaction. They also
appear in mathematical objects like random graphs and percolation clusters.

It is easy to generate a self-avoiding random walk of length n via Monte
Carlo if n is small. We simply simulate random walks of length n until one of
them is self-avoiding.

Listing 1: Matlab code

1 n = 7; i = 1;

2

3 while(i ~= n)

4 X = 0; Y = 0;

5 lattice = zeros(2*n + 1, 2*n+1);

6 lattice(n+1, n+1) = 1;

7 path = [0 0];

8 for i = 1:n

9

10 U = rand;

11 if U < 1/2

12 X = X + 2 * (U < 1/4) - 1;

13 else

14 Y = Y + 2 * (U < 3/4) - 1;

15 end

16

17 path_addition = [X Y];

18 path = [path; path_addition];

19

20 lattice_x = n + 1 + X;

21 lattice_y = n + 1 + Y;

22

23 if lattice(lattice_x, lattice_y) == 1

24 i = 1; break;

25 else

26 lattice(lattice_x, lattice_y) = 1;

27 end

28 end

4

29 end

30

31 clf; hold on;

32 axis([-n n -n n]);

33 for j = 1:n

34 line([path(j,1), path(j+1,1)], [path(j,2), path(j+1,2)]);

35 end

The problem is that for large n, it is very unlikely that a random walk will
be a self-avoiding random walk. To put this in perspective, there are 4n possible
random walks of length n on the 2D square lattice. In general, the number of
self-avoiding random walks for a given n is not known. However, for small n,
these have been calculated.

• For n = 5, there are 284 self-avoiding walks. So, the probability that a
single random walk of length 5 will be self-avoiding is

284

45
=

284

1024
≈ 0.2773.

This means we only need to generate roughly 4 walks in order to get a
self-avoiding one.

• For n = 10, there are 441000 self-avoiding random walks. So, the proba-
bility is

44100

410
=

44100

1048576
≈ 0.0421.

This means we need to generate about 24 walks in order to get a self-
avoiding one.

• For n = 20, there are 897697164 self-avoiding random walks. The proba-
bility is

897697164

420
≈ 8.16× 10−4.

so we need to generate about 1125 walks in order to get a self-avoiding
one.

Pretty clearly, the situation becomes unworkable by n = 100 or n = 150.
Unfortunately, people are often interested in asymptotic results when consider-
ing objects like self-avoiding random walks. In order to get information about
asymptotic behavior, we need to be able to generate statistics for random walks
with large n values. An obvious modification to the standard algorithm would
be to try to choose the next step of the random walk to avoid the places the
random walk has already been. The simplest way to do this is to chose the next
site of the random walk from the set of empty neighbors of the current site.

PICTURE HERE

This approach is straightforward to implement in Matlab.

5

Listing 2: Matlab code

1 n = 250; i = 1;

2 moves = [0 1; 0 -1; -1 0; 1 0];

3

4 while(i ~= n)

5 X = 0; Y = 0;

6 lattice = zeros(2*(n+1) + 1, 2*(n+1)+1);

7 lattice(n+2, n+2) = 1;

8 path = [0 0];

9 for i = 1:n

10 lattice_x = n + 2 + X; lattice_y = n + 2 + Y;

11

12 up = lattice(lattice_x,lattice_y + 1);

13 down = lattice(lattice_x,lattice_y - 1);

14 left = lattice(lattice_x-1,lattice_y);

15 right = lattice(lattice_x+1,lattice_y);

16 neighbors = [1 1 1 1] - [up down left right];

17

18 if sum(neighbors) == 0

19 i = 1; break;

20 end

21

22 direction = ...

23 min(find(rand<(cumsum(neighbors)/sum(neighbors))));

24 X = X + moves(direction,1);

25 Y = Y + moves(direction,2);

26

27 lattice_x = n + 2 + X; lattice_y = n + 2 + Y;

28 lattice(lattice_x,lattice_y) = 1;

29 path_addition = [X Y];

30 path = [path; path_addition];

31 end

32 end

33

34 clf; hold on;

35 axis([-n n -n n]);

36 for j = 1:n

37 line([path(j,1), path(j+1,1)], [path(j,2), path(j+1,2)]);

38 end

This approach does not solve all our problems (it is still possible to a path to
die out early), however it significantly increases the length of the self-avoiding
walks we are able to generate in a reasonable amount of time. Unfortunately, this
approach does not generate self-avoiding walks of length n uniformly. Consider
the two self-avoiding random walks of length 5 shown in figures 3.3 and 3.4. The
first has probability 1/4× 1/3× 1/3× 1/3× 1/3 and the second has probability
1/4 × 1/3 × 1/3 × 1/3 × 1/2. Basically, the algorithm is biased towards more
compact configurations. You can also see this in figure 3.5 and figure 3.5, which
are less spread out than most self-avoiding walks. The obvious way to try to fix

6

this is importance sampling.

Figure 3.3: A path of a self-avoiding walk of length 5.

Figure 3.4: A path of a self-avoiding walk of length 5.

−30 −25 −20 −15 −10 −5 0 5

−30

−25

−20

−15

−10

−5

0

5

Figure 3.5: A realization of a self-avoiding random walk with 250 steps using
the new technique.

The probability mass function for self-avoiding walks starting at x0 = (x0, y0),
which we represent by x1 = (x1, y1), . . . ,xn = (xn, yn), is given by

p(x1, . . . ,xn) =
I ((x1, . . . ,xn) ∈ En)

Zn

,

7

−10 −5 0 5 10 15 20 25 30

−20

−15

−10

−5

0

5

10

Figure 3.6: A realization of a self-avoiding random walk with 250 steps using
the new technique.

where En is the set of self-avoiding random walks of length n. Unfortunately,
as mentioned before, we do not know Zn. However, we can use weighted impor-
tance sampling instead. To do this, we still need an expression for q(x1, . . . ,xn),
the probability mass function based on the new method. We can get this ex-
pression using sequential importance sampling. Note that, at step i − 1 of the
random walk, we know all the information up to step i− 1, so we can calculate
q(xi |x0, . . . ,xi−1). Let di−1 be the number of unoccupied neighbors of xi−1.
This is a function of x0, . . . ,xi−1. Then,

q(xi |x0, . . . ,xi−1) =

{
1/di−1, if xi is an unoccupied neighbor of xi−1

0, otherwise

Thus, a successful realization of a self-avoiding random walk under our algo-
rithm, x1, . . . ,xn will have a probability of

q(x1, . . . ,xn) =
I ((x1, . . . ,xn) ∈ En)

d0 · · · dn−1

Note that p(x1, . . . ,xn) ∝ I ((x1, . . . ,xn) ∈ En), so we can use weights of the
form

W (x1, . . . ,xn) = I ((x1, . . . ,xn) ∈ En) d0 · · · dn−1,

in weighted importance sampling.

3.0.1 Estimating Mean Square Extension

One of the classical objects of interest for self-avoiding random walks is
mean square extension. Given a self-avoiding random walk of length n, the
mean square extension is defined as E ‖Xn − x0‖

2
. Starting at x0 = (0, 0), this

is E ‖Xn‖
2
= E

∥∥X2
n + Y 2

n

∥∥2. The standard Monte Carlo estimator of this would

8

be

ℓ̂ =
1

N

N∑

i=1

∥∥∥X(i)
n

∥∥∥
2

,

where X
(1)
n , . . . ,X

(N)
n are i.i.d. draws from p(x1, . . . ,xn). The weighted impor-

tance sampling estimator, using the alternative approach, is

ℓ̂IS =

1
N

∑N

i=1 d
(i)
0 · · · d

(i)
n−1

∥∥∥X(i)
n

∥∥∥
2

1
N

∑N

i=1 d
(i)
0 · · · d

(i)
n−1

,

whereX
(1)
n , . . . ,X

(N)
n are i.i.d. draws from q(x1, . . . ,xn), and the values d

(i)
1 , . . . , d

(i)
n

etc. are functions of the appropriate self-avoiding random walk.
An implementation of the standard Monte Carlo approach is

Listing 3: Matlab code

1 N = 10^5; n = 5;

2 square_extension = zeros(N,1);

3

4 for step_i = 1:N

5 i = 1;

6 while(i ~= n)

7 X = 0; Y = 0;

8 lattice = zeros(2*n + 1, 2*n+1);

9 lattice(n+1, n+1) = 1;

10 for i = 1:n

11 U = rand;

12 if U < 1/2

13 X = X + 2 * (U < 1/4) - 1;

14 else

15 Y = Y + 2 * (U < 3/4) - 1;

16 end

17

18 lattice_x = n + 1 + X;

19 lattice_y = n + 1 + Y;

20

21 if lattice(lattice_x, lattice_y) == 1

22 i = 1;

23 break;

24 else

25 lattice(lattice_x, lattice_y) = 1;

26 end

27 end

28 end

29

30 square_extension(step_i) = X^2 + Y^2;

31 end

32

33 mean_square_extension = mean(square_extension)

9

An implementation of the importance sampling version is

Listing 4: Matlab code

1 N = 10^5; n = 150; square_extension = zeros(N,1);

2 moves = [0 1; 0 -1; -1 0; 1 0];

3

4 for step_i = 1:N

5 i = 1;

6 while(i ~= n)

7 X = 0; Y = 0; weight = 1;

8 lattice = zeros(2*(n+1) + 1, 2*(n+1)+1);

9 lattice(n+2, n+2) = 1;

10 for i = 1:n

11 lattice_x = n + 2 + X; lattice_y = n + 2 + Y;

12 up = lattice(lattice_x,lattice_y + 1);

13 down = lattice(lattice_x,lattice_y - 1);

14 left = lattice(lattice_x-1,lattice_y);

15 right = lattice(lattice_x+1,lattice_y);

16 neighbors = [1 1 1 1] - [up down left right];

17

18 if sum(neighbors) == 0

19 i = 1; break;

20 end

21 weight = weight * sum(neighbors);

22 direction = ...

23 min(find(rand<(cumsum(neighbors)/sum(neighbors))));

24 X = X + moves(direction,1);

25 Y = Y + moves(direction,2);

26 lattice_x = n + 2 + X; lattice_y = n + 2 + Y;

27 lattice(lattice_x,lattice_y) = 1;

28 end

29 end

30 weights(step_i) = weight;

31 square_extension(step_i) = X^2 + Y^2;

32 end

33 mean_square_extension = ...

34 mean(weights’.*square_extension) / mean(weights)

10

