Risk Theory

Exercise Sheet 4

Due to: May 27, 2014

Note: Please submit exercise sheets in couples!

Problem 1 (3 credits)

Show that a real-valued stochastic process $\{X(t), t \ge 0\}$ with independent increments has stationary increments if for all $t \ge 0$ the distribution of the (one-dimensional) random variable X(t+h) - X(h) does not depend on $h \ge 0$.

Problem 2 (9 credits)

Let $\{N(t), t \ge 0\}$ be a mixed Poisson process with mixing random variable Λ .

(a) Show that for the generating function $\hat{g}_{N(t)}(s) = \mathbb{E}s^{N(t)}, |s| < 1$ of N(t) it holds that

$$\hat{g}_{N(t)}(s) = \hat{l}_{\Lambda}(t(1-s)), \ \forall t \ge 0.$$

(b) Show that

- (1) $\mathbb{E}[N(t) \cdot (N(t) 1) \cdot \ldots \cdot (N(t) k + 1)] = t^k \mathbb{E}[\Lambda^k], \ k \in \mathbb{N},$
- (2) $\mathbb{E}[N(t)] = t \cdot \mathbb{E}[\Lambda],$
- (3) $\operatorname{Var}(N(t)) = t^2 \operatorname{Var}(\Lambda) + t \mathbb{E}[\Lambda].$

Problem 3 (4 credits)

Let $\{N(t), t \ge 0\}$ be a Pascal process with parameters a, b > 0.

(a) Show that

$$\hat{g}_{N(t)}(s) = \left(\frac{b}{b+t(1-s)}\right)^a, s \in (-1,1), t \ge 0.$$

(b) Show that

$$p_k(t) = \binom{a+k-1}{k} \left(\frac{t}{t+b}\right)^k \left(\frac{b}{t+b}\right)^a$$

i.e. N(t) follows a negative binomial distribution with parameters a and $\frac{t}{t+b}$.

Problem 4 (4 credits)

Let $\{N(t),t\geq 0\}$ be a Delaporte process. The density of the mixing random variable is given by

$$f_{\Lambda}(\lambda) = \frac{\eta^a (\lambda - b)^{a-1}}{\Gamma(a)} e^{-\eta(\lambda - b)} \mathbb{1}(\lambda > b).$$

(a) Show that

$$p_0(t) = e^{-bt} \left(\frac{\eta}{\eta+t}\right)^a.$$

(b) Show that

$$\hat{g}_{N(t)}(s) = e^{-(1-s)tb} \left(\frac{\eta}{\eta + (1-s)t}\right)^a, |s| < 1.$$

Problem 5 (4 credits)

Determine the expected value, the variance and the index of dispersion of the negative binomial distribution with parameters $\alpha > 0$ and $p \in (0, 1)$.