Risk Theory

Exercise Sheet 6

Due to: June 10, 2014
Note: Please submit exercise sheets in couples!

Problem 1 (4 credits)

Consider a bonus-malus system with classes P (perfect), A (average), B (bad), and D (dangerous). Given are the following transition rules.

1. From P to P if 0 claims occur or 1 claim occurs, to A if 2 claims occur, to B if 3 claims occur and to D if more than 3 claims occur.
2. From A to P if 0 claims occur, to A if 1 claim occurs, to B if 2 claims occur and to D if more than 2 claims occur.
3. From B to A if 0 claims occur, to B if 1 claim occurs, and to D if more than 1 claim occurs.
4. From D to B if 0 claims occur and to D if more than 0 claims occur.
(a) Construct the transition matrix using the probabilities 0.6 that 0 claims occur, 0.2 that 1 claim occurs, 0.1 that 2 claims occur and 0.1 that 3 claims occur.
(b) Compute the vector $(p(A), p(B), p(C), p(D))$ of stationary probabilities.

Problem 2 (5 credits)
For a portfolio of fire insurance contracts on buildings, the following data is given.

k	Number of policies with k claims
0	103705
1	11632
2	1767
3	255
4	44
5	6
6	2
≥ 7	0
	$\Sigma=117411$

(a) Estimate the expected value of the number of claims N (per policy) by the sample mean λ_{1} and the variance of N by the sample variance λ_{2}. Is the Poisson distribution an appropriate model for the number of claims?
(b) In the following, the result of part (a) will be further analyzed. For this purpose, N is modelled by a Poisson distribution with parameters λ_{1} and λ_{2}, respectively. Compare both distributions with the empirical distribution of the number of claims.
(c) Use λ_{1} and λ_{2} to approximate the distribution of the number of claims by a negative binomial distribution and compare the results to those of part (b).

Problem 3 (4 credits)
Show that for $N \sim \log (p), p \in(0,1)$, the formula $p_{k}=\left(a+\frac{b}{k}\right) \cdot p_{k-1}, k=2,3, \ldots$ holds true for $a=p$ and $b=-p$.

Problem 4 (5 credits)
Show that for $N_{1} \sim \operatorname{Eng}(\theta, p)$ and $N_{2} \sim \log (p)$ it holds that

$$
\mathbb{P}\left(N_{1}=k\right) \rightarrow \mathbb{P}\left(N_{2}=k\right), k \in \mathbb{N}, \theta \rightarrow 0
$$

and thus $N_{1} \xrightarrow{d} N_{2}, \theta \rightarrow 0$.

Problem 5 (6 credits)
Show that Kolmogorov's backward equations are valid.

