Risk Theory

Exercise Sheet 7

Due to: June 17, 2014

Note: Please submit exercise sheets in couples!

In all problems, please use the collective model of risk theory.

Problem 1 (6 credits)

Show that the Laplace transform of the total claim amount $X = \sum_{i=1}^{N} U_i$ is given by

$$\hat{l}_X(s) = \hat{g}_N(\hat{l}_{U1}(s)), \ s \in \mathbb{R}_+,$$

where $\hat{g}_N(z)$ is the generating function of N and $\hat{l}_{U1}(s)$ is the Laplace transform of U_1 .

Problem 2 (6 credits)

Consider the total claim amount $X = \sum_{i=1}^{N} U_i$, where $N \sim \text{Poi}(\lambda)$, $\lambda > 0$ and $U_1 \sim \text{Exp}(a)$, a > 0. Show that for the Laplace transform it holds that

$$\hat{l}_X(s) = \exp\left(-\frac{\lambda s}{a+s}\right), \ s \in \mathbb{R}_+.$$

Problem 3 (6 credits)

Compute the distribution function and the density function of the continuous component of the compound

- (a) Poisson distribution,
- (b) geometrical distribution,

if $U_1 \sim \operatorname{Exp}(a)$ for a > 0.

Problem 4 (6 credits)

Let $X = \sum_{i=1}^{N} U_i$ be a compound risk with $\mathbb{E}X^2 < \infty$, $\mathbb{E}U_1^2 < \infty$, $\mathbb{E}N^2 < \infty$. Show that (a) $\mathbb{E}X = \mathbb{E}N \cdot \mathbb{E}U_1$, (b) $\operatorname{Var}(X) = \operatorname{Var}(N) \cdot (\mathbb{E}U_1)^2 + \mathbb{E}N \cdot \operatorname{Var}(U_1)$.

Problem 5 (6 credits)

Consider again the fire insurance on buildings of sheet 6. The following two tables provide information about the number of claims and claim sizes.

- (a) Estimate the expected value and the variance of the total claim amount X.
- (b) Determine the reserve capital that is required such that the total claim amount is covered with a probability of at least 95%. Use Tchebyshev's inequality for this purpose.

k	Number of policies with k claims
0	103705
1	11632
2	1767
3	255
4	44
5	6
6	2
≥ 7	0
	$\Sigma = 117411$

Claim size in the interval (in 100 $\textcircled{\bullet}$)	Number of claims	Average claim size (in 100 $\textcircled{\bullet}$)
(0, 50]	51	39
(50, 100]	118	72
(100, 150]	115	120
(150, 200]	77	179
(200, 300]	204	249
(300, 500]	583	399
(500, 800]	1278	647
(800, 1000]	818	898
(1000, 2000]	3569	1401
(2000, 5000]	6056	3009
(5000, 10000]	2162	6729
(10000, 20000]	807	13511
(20000, 50000]	251	27590
(50000, 100000]	60	69426
	$\Sigma = 16149$	