Risk Theory

Exercise Sheet 9

Due to: July 1, 2014

Note: Please submit exercise sheets in couples!

Problem 1 (6 credits)

- (a) Let X, Y > 0 be arbitrary risks (not necessarily stochastically independent). Which connection exists between "cv(X + Y)" and "cv(X) + cv(Y)", where "cv" denotes the coefficient of variation?
- (b) Show that

$$cv(aX) = cv(X)$$

for any arbitrary risk X and for a > 0.

Problem 2 (6 credits)

Consider two risks X and Y, where their respective distributions are given by

- $\mathbb{P}(X=0) = 0.9$ and $\mathbb{P}(X > t) = 0.1 \exp(-t)$.
- $\mathbb{P}(Y=0) = 0.8$ and $\mathbb{P}(Y > t) = 0.2 \ (1+t)^{-3}$.
- (a) Show that both risks have the same expectation and variance.
- (b) Compare the two risks using the semivariance

 $\mathbb{E}[(X-\mathbb{E}[X])_+]^2=\mathbb{E}[X-\mathbb{E}[X]]^2 \mathbbm{1}(X>\mathbb{E}[X]),$

and decide which of these risks is the more dangerous one. *Hint:* You may use $\int_{0.1}^{\infty} (x - 0.1)^2 \frac{3}{(1+x)^4} dx = \frac{10}{11}$.

Problem 3 (6 credits)

Let F be a continuous distribution function on \mathbb{R} and assume that $\int_{-\infty}^{\infty} |x| dF(x) < \infty$. Show that the following holds for all $a \in \mathbb{R}$:

- (a) $\int_{-\infty}^{\infty} (x-a)_+ dF(x) = \int_a^{\infty} \overline{F}(x) dx.$
- (b) $\int_{-\infty}^{\infty} (a-x)_{+} dF(x) = \int_{-\infty}^{a} F(x) dx.$

Problem 4 (6 credits)

Show the so-called one-cut-criterion. Let X and Y be two random variables with continuous distribution functions F_X and F_Y , respectively. Suppose that $E|X| < \infty$ and $\mathbb{E}|Y| < \infty$ and that $\mathbb{E}[X] \leq \mathbb{E}[Y]$. If for some $t_0 \in \mathbb{R}$ $F_X(t) \leq F_Y(t)$ for $t < t_0$ and $F_X(t) \geq F_Y(t)$ for $t > t_0$, then $X \leq_{sl} Y$.

Hint: You may use the following without proof. Let $h : \mathbb{R} \to \mathbb{R}$ be a measurable function with $\int_{-\infty}^{\infty} |h(t)| dt < \infty$ and $\int_{-\infty}^{\infty} h(t) dt \ge 0$. If for $t_0 \in \mathbb{R}$ it holds that $h(t) \le 0$ for all $t < t_0$ and that $h(t) \ge 0$ for all $t > t_0$, then $\int_x^{\infty} h(t) dt \ge 0$ for all $x \in \mathbb{R}$.

Problem 5 (6 credits)

Let $X \sim Bin(1, p), p \in (0, 1)$ and $Y \sim Poi(p)$. Apply the one-cut-criterion in order to show

$$X \leq_{sl} Y.$$