
Stochastic Simulation of
Processes, Fields and

Structures

Ulm University

Institute of Stochastics

Lecture Notes

Dr. Tim Brereton

Summer Term 2014

Ulm, 2014

2

Contents

1 Random Walks, Estimators and Markov Chains 7

1.1 Stochastic Processes . 7

1.2 Random Walks . 7

1.2.1 Bernoulli Processes . 7

1.2.2 Random Walks . 10

1.2.3 Probabilities of Random Walks 13

1.2.4 Distribution of Xn . 13

1.2.5 First Passage Time . 14

1.3 Properties of Estimators . 15

1.3.1 Bias, Variance, the Central Limit Theorem and Mean
Square Error . 18

1.3.2 Non-Asymptotic Error Bounds 21

1.3.3 Big O and Little o Notation 22

1.4 Markov Chains . 23

1.4.1 Simulating Markov Chains 26

1.4.2 Communication . 28

1.4.3 The Strong Markov Property 28

1.4.4 Recurrence and Transience 29

1.4.5 Invariant Distributions 34

1.4.6 Limiting Distribution 36

1.4.7 Reversibility . 37

1.4.8 The Ergodic Theorem 39

1.5 Extending the Random Walk Model 41

1.5.1 Sums of Independent Random Variables 41

1.6 Importance Sampling . 45

1.6.1 Weighted Importance Sampling 51

1.6.2 Sequential Importance Sampling 52

1.6.3 Self-Avoiding Random Walks 54

3

4 CONTENTS

2 Poisson Processes and Continuous Time Markov Chains 63
2.1 Stochastic Processes in Continuous Time 63
2.2 The Poisson Process . 65

2.2.1 Point Processes on [0,∞) 65
2.2.2 Poisson Process . 67
2.2.3 Order Statistics and the Distribution of Arrival Times 70
2.2.4 Simulating Poisson Processes 72
2.2.5 Inhomogenous Poisson Processes 74
2.2.6 Simulating an Inhomogenous Poisson Process 75
2.2.7 Compound Poisson Processes 77

2.3 Continuous Time Markov Chains 78
2.3.1 Transition Function . 79
2.3.2 Infinitesimal Generator 80
2.3.3 Continuous Time Markov Chains 80
2.3.4 The Jump Chain and Holding Times 80
2.3.5 Examples of Continuous Time Markov Chains 81
2.3.6 Simulating Continuous Time Markov Chains 82
2.3.7 The Relationship Between P and Q in the Finite Case 84
2.3.8 Irreducibility, Recurrence and Positive Recurrence . . . 85
2.3.9 Invariant Measures and Stationary Distribution 86
2.3.10 Reversibility and Detailed Balance 87

3 Gaussian Processes and Stochastic Differential Equations 89
3.1 Gaussian Processes . 89

3.1.1 The Multivariate Normal Distribution 89
3.1.2 Simulating a Gaussian Processes Version 1 94
3.1.3 Stationary and Weak Stationary Gaussian Processes . . 98
3.1.4 Finite Dimensional Distributions 103
3.1.5 Marginal and Conditional Multivariate Normal Distri-

butions . 104
3.1.6 Interpolating Gaussian Processes 105
3.1.7 Markovian Gaussian Processes 106

3.2 Brownian Motion . 108
3.2.1 Existence . 111
3.2.2 Some useful results . 115
3.2.3 Integration With Respect to Brownian Motion 116

3.3 Stochastic Differential Equations 116
3.3.1 Itô’s Lemma . 117
3.3.2 Numerical Solutions of SDEs 117
3.3.3 Multidimensional SDEs 121

3.4 Existence and Uniqueness Result 123

CONTENTS 5

3.5 SDEs and PDEs . 124
3.6 Error Analysis for Numerical Solutions of SDEs 124
3.7 Multilevel Monte Carlo . 129

3.7.1 The Multilevel Estimator 129
3.7.2 Variance, Work and Optimal Sample Sizes 130
3.7.3 A Rough Sketch of Why Multilevel Monte Carlo Works 131
3.7.4 The Key Theorem . 132
3.7.5 Implementation . 133

4 Spatial Processes 135
4.1 Random Fields . 135

4.1.1 Gaussian Random Fields 135
4.1.2 Markov Random Fields 139
4.1.3 Gaussian Random Markov Fields 140

4.2 Spatial Poisson Processes . 145
4.2.1 Binomial Process . 146
4.2.2 Spatial Point Processes 148

6 CONTENTS

Chapter 1

Random Walks, Estimators and
Markov Chains

1.1 Stochastic Processes

To begin, we need to define the basic objects we will be learning about.

Definition 1.1.1 (Stochastic Process). A stochastic process is a set of ran-
dom variables {Xi}i∈I , taking values in a state space X , with index sex I ⊂ R.

In general, i represents a point in time. However, it could represent a
point in 1D space as well.

We will say a process is discrete time if I is discrete. For example, I
could be N or {1, 2, 3, 10, 20}. Normally, when we talk about discrete time
stochastic processes, we will use the index n (e.g., {Xn}n∈N).

We will say a process is continuous time if I is an interval. For example
[0,∞) or [1, 2]. Normally, when we talk about continuous time stochastic
processes, we will use the index t (e.g. {Xt}t∈[0,T]).

1.2 Random Walks

1.2.1 Bernoulli Processes

One of the simplest stochastic processes is a random walk. However, even
though the random walk is very simple, it has a number of properties that will
be important when we think about more complicated processes. To define
a random walk, we begin with an even simpler process called a Bernoulli

process. A Bernoulli process is a discrete time process taking values in the
state space {0, 1}.

7

8 CHAPTER 1. RANDOM WALKS ETC.

Definition 1.2.1 (Bernoulli Process). A Bernoulli process with parameter
p ∈ [0, 1] is a sequence of independent and identically distributed (i.i.d.) ran-
dom variables, {Yn}n≥1, such that

P(Y1 = 1) = 1− P(Y1 = 0) = p. (1.1)

A variable with the probability mass function (pmf) described by (1.1) is
called a Bernoulli random variable with distribution Ber(p).

In the case where p = 1/2, you can think of a Bernoulli process as a
sequence of fair coin tosses. In the case where p 6= 1/2, you can think of a
Bernoulli process as a sequence of tosses of an unfair coin.

Note that if U ∼ U(0, 1), then P(U ≤ p) = p for p ∈ [0, 1]. This means
if we define the random variable Y = I(U ≤ p), where I(·) is the indicator
function and U ∼ U(0, 1), we have

P(Y = 1) = 1− P(Y = 0) = p.

In Matlab, we can make these variables as follows.

Listing 1.1: Generating a Bernoulli Random Variable

1 Y = (rand <= p)

If we want to make a realization of the first n steps of a Bernoulli process,
we simply make n such variables. One way to do this is the following.

Listing 1.2: Generating a Bernoulli Process 1

1 n = 20; p = 0.6; Y = zeros(n,1);

2

3 for i = 1:n

4 Y(i) = (rand <= p);

5 end

We can do this more quickly in Matlab though.

Listing 1.3: Generating a Bernoulli Process 2

1 n = 20; p = 0.6;

2

3 Y = (rand(n,1) <= p);

It is important to be able to visualize stochastic objects. One way to
represent / visualize a Bernoulli process is to put n = 1, 2, . . . on the x-axis
and the values of Yn on the y-axis. I draw a line (almost of length 1) at each
value of Yn, as this is easier to see than dots. Figure 1.2.1 shows a realization
of the first 20 steps of a Bernoulli process.

1.2. RANDOM WALKS 9

Listing 1.4: Generating and Visualizing a Bernoulli Process

1 n = 20; p = 0.6;

2

3 Y = (rand(n,1) <= p);

4

5 clf;

6 axis([1 n+1 -0.5 1.5]);

7 for i = 1:n

8 line([i, i+.9],[Y(i) Y(i)]);

9 end

2 4 6 8 10 12 14 16 18 20

0

1

n

Y
n

Figure 1.2.1: A realization of the first 20 steps of a Bernoulli process.

Now, it is easy to write out the probability of seeing a particular realiza-
tion of n steps of a Bernoulli process. This is given by

P(Yn = yn, Yn−1 = yn−1, . . . , Y1 = y1) = pNU (1− p)n−NU .

where NU is the number of times the Bernoulli process takes the value 1.
More technically, we define NU as

NU = #{0 ≤ i ≤ n : yi = 1},

where # denotes the cardinality of the set.

10 CHAPTER 1. RANDOM WALKS ETC.

1.2.2 Random Walks

Now that we can generate Bernoulli processes, we are ready to consider
our main object of interest in this chapter: the random walk. The random
walk is a discrete time random process taking values in the state space Z.

Definition 1.2.2 (Random Walk). Given a Bernoulli process {Yn}n≥1 with
parameter p, we define a random walk {Xn}n≥0 with parameter p and initial
condition X0 = x0 by

Xn+1 = Xn + (2Yn+1 − 1).

Note that (2Yn − 1) is 1 if Yn = 1 and −1 if Yn = 0. So, essentially, at
each step of the process, it goes up or down by 1.

There are lots of ways to think about random walks. One way is in terms
of gambling (which is a classical setting for probability). Think of a game
which is free to enter. The person running the game flips a coin. With
probability p, the coin shows heads and you win AC1. With probability 1− p,
you lose AC1. If you start with ACx0, and assuming you can go into debt, Xn

is the random variable describing how much money you have after n games.
Given that we know how to generate a Bernoulli process, it is straight-

forward to generate a random walk.

Listing 1.5: Generating a Random Walk 1

1 n = 100; X = zeros(n,1);

2 p = 0.5; X_0 = 0;

3

4 Y = (rand(n,1) <= p);

5 X(1) = X_0 + 2*Y(1) - 1;

6 for i = 2:n

7 X(i) = X(i-1) + 2*Y(i) - 1;

8 end

A more compact way is as follows.

Listing 1.6: Generating a Random Walk 2

1 n = 100; X = zeros(n,1);

2 p = 0.5; X_0 = 0;

3

4 Y = (rand(n,1) <= p);

5 X = X_0 + cumsum((2*Y - 1));

It is good to be able to plot these. Here, we have at least two options.
One is to draw a line for each value of Xn, as we did for the Bernoulli process.

1.2. RANDOM WALKS 11

Because the value of {Xn}n≥0 changes at every value of n, we can draw the
lines to be length 1. This approach is nice, because it reinforces the idea that
{Xn}n≥0 jumps at each value of n (this is made obvious by the gaps between
the lines).

Listing 1.7: Plotting a Random Walk 1

1 clf

2 axis([1 n+1 min(X)-1 max(X)+1]);

3 for i = 1:n

4 line([i,i+1],[X(i) X(i)],’LineWidth’,3);

5 end

For larger values of n, it is help to draw vertical lines as well as horizontal
lines (otherwise, things get a bit hard to see). We can do this as follows.

Listing 1.8: Plotting a Random Walk 2

1 clf

2 stairs(X);

3 axis([1 n+1 min(X)-1 max(X)+1]);

Below are a number of realizations of random walks. Figures 1.2.2 and
1.2.3 are generated using lines. Figures 1.2.4 and 1.2.5 are generated using
the ‘stairs’ function.

2 4 6 8 10 12 14 16 18 20
−5

−4

−3

−2

−1

0

1

2

n

X
n

Figure 1.2.2: A realization of the first 20 steps of a random walk with p = 0.5.

Note how, as the number of steps simulated gets bigger, the sample paths
look wilder and wilder.

12 CHAPTER 1. RANDOM WALKS ETC.

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

n

X
n

Figure 1.2.3: A realization of the first 20 steps of a random walk with p = 0.9.

10 20 30 40 50 60 70 80 90 100

−6

−4

−2

0

2

4

6

8

n

X
n

Figure 1.2.4: A realization of the first 100 steps of a random walk with
p = 0.5.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−20

0

20

40

60

80

n

X
n

Figure 1.2.5: A realization of the first 10000 steps of a random walk with
p = 0.5.

1.2. RANDOM WALKS 13

1.2.3 Probabilities of Random Walks

A random walk is a special kind of process, called a Markov process.
Discrete time discrete state space Markov processes (called Markov chains)
are defined by the following property.

Definition 1.2.3 (Markov Property: Discrete Time Discrete State Space
Version). We say a discrete time, discrete state space stochastic process,
{Xn}n≥0, has the Markov property if

P(Xn+1 = xn+1 |Xn = xn, . . . , X0 = x0) = P(Xn+1 = xn+1 |Xn = xn),

for all n ≥ 0 and x0, . . . , xn ∈ X .

If we think about how a random walk can move after n steps (assuming
we know the values of the first n steps), we have

P(Xn+1 = xn+1 |Xn = xn, . . . , X0 = x0) =

p if xn+1 = xn + 1,

1− p if xn+1 = xn − 1,

0 otherwise.

Note that these probabilities do not depend on any value other than Xn.
That is, it is always the case that P(Xn+1 = xn+1 |Xn = xn, . . . , X0 = x0) =
P(Xn+1 = xn+1 |Xn = xn), so {Xn}n≥0 is a Markov chain.

Using this result, we can assign probabilities to various paths of the ran-
dom walk. That is, we can write

P(Xn = xn, Xn−1 = xn−1, . . . , X1 = x1)

= P(Xn = xn|Xn−1 = xn−1, . . . , X1 = x1) · · ·P(X2 = x2|X1 = x1)P(X1 = x1)

= P(Xn = xn|Xn−1 = xn−1) · · ·P(X2 = x2|X1 = x1)P(X1 = x1)

Now, each of these probabilities is either p or 1− p. So, we can write

P(Xn = xn, Xn−1 = xn−1, . . . , X1 = x1) = pNU (1− p)n−NU .

where NU is the number of times the random walk goes up. More precisely,

NU = #{1 ≤ i ≤ n : xi − xi−1 = 1}

1.2.4 Distribution of Xn

One thing we might be interested in is the distribution of Xn, given we
only know the initial value of the random walk, x0. We can make this a bit

14 CHAPTER 1. RANDOM WALKS ETC.

simpler by thinking about the distribution ofXn−x0 (this always starts at 0).
Notice that Xn cannot be more than n steps from x0. That is, |Xn−x0| ≤ n.
Also, if x0 is even then Xn must be even if n is even and odd if n is odd. If
x0 is odd, it is the other way around.

Now, Xn − x0 = n can only happen if all n of the steps are up. There is
only one possible path for which this is true. This path has probability pn.
Likewise, Xn−x0 = n− 2 can only happen if all but one of the steps are up.
Any path for which this is true has probability pn−1(1− p)1. However, there
is more than one path that has n−1 up steps and 1 down step (the first step
could be the down one or the second step could be the down one, etc.). In
fact, there are

(
n

n−1

)
possible paths. Continuing with this pattern, we have

P(Xn − x0 = x)

=

{(
n

(n+x)/2

)
p(n+x)/2(1− p)(n−x)/2 if |x| ≤ n and x have the same parity as n

0 otherwise.

Having the same parity means both n and x are even or both n and x are
odd.

1.2.5 First Passage Time

A quantity we are often very interested in is the first passage time of
{Xn}n≥0 into the set A.

Definition 1.2.4 (First Passage Time: Discrete Time Version). Given a
stochastic process {Xn}n≥0 we define the first passage time of {Xn}n≥0 into
the set A by

τA =

{
inf{n ≥ 0 : Xn ∈ A} if Xn ∈ A for some n ≥ 0

∞ if Xn /∈ A for all n ≥ 0
.

Note that a first passage time is a random variable.
In general, for random walks, we want to calculate the first time the

process hits a certain level (say 10). In this case, A = {10, 11, . . .}. In a
random walk context, a first passage time could correspond to the first time
a queue gets too long, or (in a very simplistic model) the first time a stock
price hits a certain level.

It is possible to work out the distribution of the first passage time using
a beautiful and simple piece of mathematics called the reflection principle.
However, I will just give you the result.

1.3. PROPERTIES OF ESTIMATORS 15

Lemma 1.2.5 (First Passage Time Distribution for a Random Walk). The
distribution of the first passage time for a random walk, {Xn}n≥0 with x0 = 0,
where a 6= 0 and A = {a, a + 1, . . .} if a > 0 or A = {a, a − 1, a − 2, . . .} if
a < 0, is given by

P(τA = n) =

{
|a|
n
P(Xn = a) if a and n have the same parity and n ≥ |a|

0 otherwise
.

Working out first passage time probabilities for a random walk hitting a
with x0 6= 0 is the same as working out first passage time probabilities for a
random walk starting from 0 hitting a− x0.

Example 1.2.6 (Probability a random walk returns to 0 in 4 steps). We can
make everything a bit clearer with an example. What is the probability a
random walker returns to zero in 4 steps? Our formula for first passage time
probabilities only helps with levels other than 0. However, we can make it
work by realising that, at the first step, the random walk must step up to 1
(with probability p) or step down to −1 (with probability 1 − p). Now, the
probability a random walk starting at 1 first hits 0 in 3 steps is the same as
the probability a random walk starting at 0 first hits −1 in 3 steps and the
probability a random walk starting at −1 first hits 0 in 3 steps is the same
as the probability a random walk starting at 0 first hits 1 in 3 steps. So our
answer is of the form

pP
(
τ{−1,−2,...} = 3

)
+ (1− p)P

(
τ{1,2,...} = 3

)

= p
1

3
P(X3 = −1) + (1− p)

1

3
P(X3 = 1)

= p
1

3

(
3

1

)
p1(1− p)2 + (1− p)

1

3

(
3

2

)
p2(1− p)1

= p2(1− p)2 + (1− p)2p2 = 2p2(1− p)2

1.3 Properties of Estimators

When we generate stochastic processes, we are usually interested in cal-
culating actual numbers. These numbers are almost always in the form of
an expectation. Sometimes we just want to know EXn for some value of n
but usually it is something slightly more complicated. Often we interested
in a probability, for example P(X5 > 10) or P(τA < 10). A probability
can be written as an expectation using the indicator function. For example
P(X5 > 3) = EI(X5 > 3) and P(τA < 10) = EI(τA < 10).

16 CHAPTER 1. RANDOM WALKS ETC.

In general, we will not know how to calculate the expectations we are
interested in explicitly. In the first few weeks we will practice by calculating
expectations of things we know exactly, but soon the objects we are consid-
ering will become too complicated for us to do this. We will need to estimate
things.

Monte Carlo methods are based on one very important result in proba-
bility theory: the strong law of large numbers. In simple terms, this says we
can estimate an expected value using a sample (or empirical) average.

Theorem 1.3.1 (Strong Law of Large Numbers).
Let {X(i)}i≥0 be a sequence of i.i.d. random variables with values in R such
that E|X(1)| ≤ ∞. Let SN , N > 0, be the sample average defined by

SN =
1

N

N∑

i=1

X(i).

Then,
lim

N→∞
SN = EX(1) almost surely.

This means we can estimate ℓ = EX by simulating a sequence of random
variables with the same distribution as X and taking their average value.

That is, if we can produce a sequence of i.i.d. random variables
{
X(i)

}N
i=1

with the same distribution as X, then the estimator

ℓ̂ =
1

N

N∑

i=1

X(i),

is approximately equal to ℓ for large enough N .

Example 1.3.2 (Estimating P(X5 > 3) for a random walk). To estimate
ℓ = P(X5 > 3) = EI(X5 > 3) we can simulate N random walks until the

5th step. We then look at the N values at the 5th step, X
(1)
5 , . . . , X

(N)
5 , and

check how many of them have a value bigger than 3. Our estimator is

ℓ̂ =
1

N

N∑

i=1

I(X
(i)
5 > 3).

We can easily do this in Matlab.

Listing 1.9: Estimating P(X5 > 3)

1 N = 10^3;

2 n = 5; p = 0.5; X_0 = 0;

1.3. PROPERTIES OF ESTIMATORS 17

3

4 X = zeros(N,5);

5

6 Y = (rand(N,n) <= p);

7 X = X_0 + cumsum((2*Y - 1),2);

8 X_5 = X(:,5);

9

10 ell_est = mean(X_5 > 3)

In this simple example, we can calculate the probability exactly. It is only
possible for X5 to be greater than 3 if all the steps of the random walk are
up. That is, ℓ = P(X5 > 3) = p5. In the case where p = 0.5, ℓ = 0.03125.
We can look at example output from our estimator: for N = 101, we have
ℓ̂ = 0; for N = 102, we have ℓ̂ = 0.04; for N = 103, we have ℓ̂ = 0.026; for
N = 104, we have ℓ̂ = 0.0343; and so on. On average, our estimator will
become more accurate each time we increase N .

Example 1.3.3 (Estimating Eτ{4,5,...}). We can estimate expected hitting
times as well. For example, we might want to estimate Eτ{4,5,...} for a random
walk with x0 = 0. We should do this for a random walk with p > (1 − p),
so we can be certain the random walk hits 4. In Matlab, we would do the
following.

Listing 1.10: Estimating Eτ{4,5,...}

1 N = 10^4;

2 n = 5; p = 0.8; X_0 = 0;

3

4 tau_4 = zeros(N,1);

5

6 for i = 1:N

7 X = X_0; n = 0;

8 while(X ~= 4)

9 X = X + 2*(rand <= p) - 1;

10 n = n + 1;

11 end

12 tau_4(i) = n;

13 end

14

15 est_expec_tau_4 = mean(tau_4)

Notice that we have to use a ‘while’ loop instead of a ‘for’ loop, as we do not
know how long we will have to simulate {Xn}n≥0 for.

18 CHAPTER 1. RANDOM WALKS ETC.

1.3.1 Bias, Variance, the Central Limit Theorem and
Mean Square Error

The strong law of large numbers tells that, if we use an infinite sample, a
Monte Carlo estimator will give us the right answer (with probability 1). This
is not really a practical result. In practice, we can only run a computer for
a finite amount of time. What we are really interested in are the properties
of our estimator for a fixed N .

It is comforting if our estimator on average gives the right answer. The
bias of an estimator is the amount by which, on average, it deviates from the
value it is supposed to estimate.

Definition 1.3.4 (Bias). The bias of an estimator, ℓ̂, for the value ℓ is given
by

Bias(ℓ̂) = E[ℓ̂− ℓ] = Eℓ̂− ℓ.

An estimator without bias is called unbiased.

Definition 1.3.5 (Unbiased Estimator). We say an estimator, ℓ̂, of ℓ is

unbiased if Bias(ℓ̂) = 0 or, equivalently,

Eℓ̂ = ℓ.

Many Monte Carlo estimators are unbiased. It is usually pretty easy to
prove this.

Example 1.3.6 (Our estimator of P(X5 > 3) is unbiased). Our estimator of
ℓ = P(X5 > 3) is

ℓ̂ =
1

N

N∑

i=1

I(X
(i)
5 > 3),

where the {X i
5}Ni=1 are i.i.d. Now,

Eℓ̂ = E
1

N

N∑

i=1

I(X
(i)
5 > 3) =

1

N

N∑

i=1

EI(X
(i)
5 > 3)

(we can justify exchanging expectation and summation using the fact that the

sum is finite) and, because the {X(i)
5 }Ni=1 are i.i.d. with the same distribution

as X5,

1

N

N∑

i=1

EI(X
(i)
5 > 3) =

1

N
NEI(X

(1)
5 > 3) = EI(X5 > 3) = P(X5 > 3) = ℓ.

1.3. PROPERTIES OF ESTIMATORS 19

Because Monte Carlo estimators are random (they are averages of random
variables), their errors (deviations from the true value) are random as well.
This means we should use probabilistic concepts to describe these errors.
For unbiased estimators, variance / standard deviation is an obvious choice
of error measure. This is because variance is a measure of the deviation of
a random variable from the mean of its distribution (which, for unbiased
estimators, is the value which is being estimated). For an estimator of the

form ℓ̂ = 1
N

∑N
i=1 X

(i), with the {X(i)}Ni=1 i.i.d., the variance is given by

Var(ℓ̂) = Var

(
1

N

N∑

i=1

X(i)

)
=

1

N2
NVar(X(1)) =

1

N
Var(X(1)). (1.2)

It should be clear that, as N gets larger, the variance of Monte Carlo esti-
mators gets smaller. The standard deviation of the estimator is given by

Std(ℓ̂) =

√
Var(ℓ̂) =

√
Var(X(1))√

N
.

Example 1.3.7 (The variance of our estimator of P(X5 > 3)). The variance
of

ℓ̂ =
1

N

N∑

i=1

I(X
(i)
5 > 3),

is given by

Var(ℓ̂) =
1

N
Var(I(X5 > 3)).

Observe that I(X5 > 3) takes the value 1 with probability ℓ = P(X5 > 3) and
the value 0 with probability 1− ℓ. That is, it is a Bernoulli random variable
with parameter p = ℓ. Now, the variance of a Ber(p) random variable is given
by p(1 − p). So, Var(I(X5 > 3)) = ℓ(1 − ℓ). In example 1.3.2 we observed
that ℓ = p5. So,

Var(ℓ̂) =
ℓ(1− ℓ)

N
=

p5(1− p5)

N
.

In order to calculate variances of the form (1.2), we need to know Var(X(1)).
Unfortunately, we usually do not know this. In the example above, calcu-
lating Var(I(X5 > 3)) required us to know ℓ, which was the very quantity
we were trying to estimate. In practice, we usually estimate the variance
(or, more meaningfully, standard deviation) instead. This is easy to do in
Matlab.

20 CHAPTER 1. RANDOM WALKS ETC.

Listing 1.11: Estimating the mean and variance of our estimator of P(X5 > 3)

1 N = 10^4;

2 n = 5; p = 0.5; X_0 = 0;

3

4 X = zeros(N,5);

5

6 Y = (rand(N,n) <= p);

7 X = X_0 + cumsum((2*Y - 1),2);

8 X_5 = X(:,5);

9

10 ell_est = mean(X_5 > 3)

11 var_est = var(X_5 > 3) / N

12 std_est = std(X_5 > 3) / sqrt(N)

Knowing the variance / standard deviation is very useful, because it al-
lows us to make confidence intervals for estimators. This is because of an
even more famous result in probability theory than the strong law of large
numbers: the central limit theorem.

Theorem 1.3.8 (Central Limit Theorem). Let
{
X(i)

}N
i=1

be a sequence

of i.i.d. random values taking values in R such that E(X(1)) = µ and
Var(X(1)) = σ2, with 0 < σ2 < ∞. Then, the random variables

Zn =

∑N
i=1 X

(i) −Nµ

σ
√
N

converge in distribution to a random variable Z ∼ N(0, 1) as N → ∞.

This is important because it implies that, for large enough N ,

1

N

N∑

i=1

X(i) − EX(1)

is approximately Normally distributed with mean 0 and variance Var(X(1))/N .
As a result, we can make confidence intervals for our estimators. For exam-
ple, a 95% confidence interval would be of the form

(
ℓ̂− 1.96

√
Var(X(1))√

N
, ℓ̂+ 1.96

√
Var(X(1))√

N

)
.

Sometimes, for whatever reason, we are unable to find an unbiased es-
timator, or our unbiased estimator is not very good. For biased estimators
(and, arguably, for unbiased estimators) a good measure of the error is mean

squared error.

1.3. PROPERTIES OF ESTIMATORS 21

Definition 1.3.9 (Mean Squared Error). The mean square error of the es-

timator, ℓ̂, of ℓ is given by

MSE(ℓ̂) = E

(
ℓ̂− ℓ

)2
.

The mean square error can be decomposed into variance and bias terms.

Lemma 1.3.10. It holds true that MSE(ℓ̂) = Var(ℓ̂) + Bias(ℓ̂)2.

Proof. We have

MSE(ℓ̂) = E

(
ℓ̂− ℓ

)2
= Eℓ̂2 − 2ℓEℓ̂+ ℓ2

= Eℓ̂2 + ℓ2 − 2ℓEℓ̂+
(
Eℓ̂
)2

−
(
Eℓ̂
)2

= Eℓ̂2 −
(
Eℓ̂
)2

+ (ℓ− Eℓ̂)2

= Var(ℓ̂) + Bias(ℓ̂)2

1.3.2 Non-Asymptotic Error Bounds

Another way to measure the error of an estimator is by |ℓ−ℓ̂|, the distance
between the estimator and the value it is trying to estimate. Pretty obviously,
we want this to be as small as possible. We can get bounds on this error
using some famous inequalities from probability theory.

Theorem 1.3.11 (Markov’s inequality). Given a random variable X taking
values in R, a function g : R → [0,∞) (that is, a function that never returns
negative values), and a > 0, we have

P(g(X) ≥ a) ≤ Eg(X)

a
.

Proof. It is clear that g(X) ≥ aI(g(X) ≥ a), so Eg(X) ≥ EaI(g(X) ≥ a) =
aEI(g(X) ≥ a) = aP(g(X) ≥ a).

If we set g(x) = (x− EX)2 and a = ǫ2, where ǫ > 0, we have

P((X − EX)2 ≥ ǫ2) ≤ (X − EX)2

ǫ2
⇒ P(|X − EX| ≥ ǫ) ≤ Var(X)

ǫ2
.

This is Chebyshev’s inequality.

22 CHAPTER 1. RANDOM WALKS ETC.

Theorem 1.3.12 (Chebyshev’s inequality). Given a random variable X tak-
ing values in R with Var(X) < ∞ and ǫ > 0, we have

P(|X − EX| ≥ ǫ) ≤ Var(X)

ǫ2
.

Example 1.3.13 (Error Bounds on Probability Estimators). Consider the
standard estimator of ℓ = P(X > γ),

ℓ̂ =
1

N

N∑

i=1

I(Xi > γ).

We know the variance of this estimator is N−1
P(X > γ)(1− P(X > γ)). So,

we have the error bound

P(|ℓ̂− ℓ| > ǫ) ≤ P(X > γ)(1− P(X > γ))

Nǫ2
.

1.3.3 Big O and Little o Notation

Although it is not always sensible to concentrate on how things behave
asymptotically (for example, how an estimator behaves as N → ∞), it often
difficult to get meaningful non-asymptotic results. We will use two types of
asymptotic notation in this course. The first is what is called big O notation
(or, sometimes, Landau notation).

Definition 1.3.14 (Big O). We say f(x) = O(g(x)), or f is of order g(x),
if there exists C > 0 and x0 > 0 such that

|f(x)| ≤ Cg(x)

for all x ≥ x0 as x → ∞ (or, sometimes, as x → 0).

Example 1.3.15. The quadratic x2+3x+1 is O(x2), as, for x ≥ x0 = 1, we
have x2 + 3x+ 1 ≤ x2 + 3x2 + x2 = 5x2, so x2 + 3x+ 1 ≤ Cx2 where C = 5.

If we can break a function into a sum of other functions (e.g., f(x) =
x2 + 3x = f1(x) + f2(x), where f1(x) = x2 and f2(x) = 3x), then the order
of f is the order of the component function with the biggest order. In our
example, f1(x) = O(x2) and f2(x) = O(x), so f(x) = O(x2).

We use big O notation to describe the behavior of algorithms. If we
measure the dimension of a problem by n— for example, the number of items
in a list that we have to sort — then the work done by the algorithm will
usually be a function of n. Usually, we prefer algorithms with smaller growth

1.4. MARKOV CHAINS 23

rates for the work they have to do. For example, if algorithm 1 accomplishes
a task with O(n) work and another algorithm needs O(n2) work, then we
will tend to prefer algorithm 1. However, if the work done by algorithm 1
is f1(n) = 106n and the work done by algorithm 2 is f2(n) = n2, then the
second algorithm is actually better if n < 106, even though its order is worse.

It is worth noting that x2 = O(x2), but it is also true that x2 = O(x3),
so the equals sign is something of an abuse of notation.

Example 1.3.16 (The Standard Deviation of the Monte Carlo Estimator).
The standard deviation of the Monte Carlo estimator

ℓ̂ =
1

N

N∑

i=1

X(i),

is
1√
N

√
Var(X(1)) = O(N−1/2).

Definition 1.3.17 (Small o Notation). We say f(x) = o(g(x)) if

f(x)

g(x)
→ 0

as x → ∞ (or, sometimes, as x → 0).

Basically, f(x) = o(g(x)) means that f(x) is growing more slowly than
g(x) as x gets large (or small).

1.4 Markov Chains

The following material is closely based on the book “Markov Chains” by
James Norris ([3]). This is really a wonderful book and well worth buying if
you are interested in Markov chains.

As stated above, random walks are examples of Markov Chains, discrete
time discrete state space stochastic processes with the Markov property.
While random walks can only move up or down by 1 at each step, there
is no such restriction on Markov chains in general.

On a finite state space (i.e., |X | < ∞) a Markov chain can be represented
by a transition matrix, P . The element in the ith row and jth column, Pi,j ,
describes the probability of going from state i to state j in one step. That
is Pi,j = P(X1 = j |X0 = i). We will always work with homogenous Markov
chains (that is, the transition probabilities will never depend on n), so we
have that Pi,j = P(X1 = j |X0 = i) = P(Xn+1 = j |Xn = i) for all n ≥ 0.

24 CHAPTER 1. RANDOM WALKS ETC.

Example 1.4.1. Consider the Markov chain with the following graphical
representation (the nodes are the states and the arrows represent possible
transitions, with the probabilities attached).

PICTURE HERE

We can write this in matrix form as

P =

0 1/3 1/3 1/3
0 1/2 1/2 0
1/2 0 0 1/2
1/2 0 1/2 0

The convention when working with Markov chains is to describe probabil-
ity distributions using row vectors. So, for example, µ = (1/4, 1/4, 1/4, 1/4)
would be a possible probability distribution for 4 states.

The initial state of the Markov chain, x0, will be given by a probability
distribution. I will try to use λ for this. So, for example, P(X0 = 1) = λ1.
When the Markov chain starts at a fixed state, x0, this will be represented by
the distribution δi which is 0 for all states except the ith one, where it is 1.
Because the Markov property tells us that it is sufficient to know the current
state in order to calculate the probability of the next state, the transition
probability matrix P and the initial distribution λ fully specify the Markov
chain. We will call a Markov chain a (P , λ) Markov chain if it has transition
probability matrix P and the initial distribution λ.

The path probabilities of a Markov chain are straightforward to calculate.
We have

P(Xn = xn, Xn−1 = xn−1, . . . , X1 = x1, X0 = x0)

= P(Xn = xn |Xn−1 = xn−1) · · ·P(X1 = x1 |X0 = x0)P(X0 = x0)

= Pxn−1,xn
Pxn−2,xn−1 · · ·Px0,x1λx0

We can also work out the distribution of Xn quite easily. Labeling the
states from 1, . . . , L, the probability that we are in state 1 in the first step is
given by

P(X1 = 1) = λ1P1,1 + λ2P2,1 + · · ·+ λLPL,1.

Likewise,

P(X1 = 2) = λ1P1,2 + λ2P2,2 + · · ·+ λLPL,2.

and,

P(X1 = L) = λ1P1,L + λ2P2,L + · · ·+ λLPL,L.

1.4. MARKOV CHAINS 25

It is easy to see, in fact, that the distribution

(P(X1 = 1),P(X1 = 2), . . . ,P(X1 = L))

is given by λP . If we consider P(X2 = x2), we have

P(X2 = 1) = P(X1 = 1)P1,1 + P(X1 = 2)P2,1 + · · ·+ P(X1 = L)PL,1,

and so on. This implies that the distribution of X2 is given by λP 2. If we
keep on going, we have the general result that, for a (P , λ) Markov chain,

P(Xn = j) = (λP n)j.

We call P n the n-step transition matrix.

Example 1.4.2 (Calculating the Distribution of Xn). Consider the Markov
chain from example 1.4.1, with transition matrix

P =

0 1/3 1/3 1/3
0 1/2 1/2 0
1/2 0 0 1/2
1/2 0 1/2 0

 .

Given an initial distribution, λ = (1/4, 1/4, 1/4, 1/4), we can calculate the
distribution of Xn in Matlab as follows.

Listing 1.12: Finding the Distribution of Xn

1 n = 2;

2 P = [0 1/3 1/3 1/3; 0 1/2 1/2 0; 1/2 0 0 1/2; 1/2 0 1/2 0];

3 lambda = [1/4 1/4 1/4 1/4];

4

5 X_n_dist = lambda * P^n

For n = 1, we get

λP = (0.2500, 0.2083, 0.3333, 0.2083).

For n = 2, we have

λP 2 = (0.2708, 0.1875, 0.2917, 0.2500).

For n = 20, we have

λP 20 = (0.2727, 0.1818, 0.3030, 0.2424).

26 CHAPTER 1. RANDOM WALKS ETC.

And, for n = 1000, we have

λP 1000 = (0.2727, 0.1818, 0.3030, 0.2424).

If we use the initial distribution λ = (1, 0, 0, 0), then, for n = 1, we have

λP = (0, 0.3333, 0.3333, 0.3333).

For n = 2, we have

λP 2 = (0.3333, 0.1667, 0.3333, 0.1667).

For n = 20, we have

λP 20 = (0.2727, 0.1818, 0.3030, 0.2424).

And, for n = 1000, we have

λP 1000 = (0.2727, 0.1818, 0.3030, 0.2424).

Notice that the distributions appears to converge to the same distribution
regardless of the choice of initial distribution.

When we define Markov chains on infinite (but countable) state spaces,
we can still keep lots of the formalism from the finite state space setting.
Because the state space is countable, it still makes sense to talk about Pi,j .
However, now the matrix is infinite, so calculating values like P n may be a
bit more difficult (we cannot just enter the matrix into Matlab and take the
nth power).

Example 1.4.3 (Transition Matrix for a Random Walk). For a random
walk, we have the transition matrix (Pi,j)i∈Z,j∈Z, where

Pi,j =

p if j = i+ 1

(1− p) if j = i− 1

0 otherwise

.

1.4.1 Simulating Markov Chains

We need some basic techniques for drawing from discrete distributions
before we can start simulating Markov chains.

1.4. MARKOV CHAINS 27

Drawing from a Discrete Uniform Distribution

We can simulate a random variables from the discrete uniform distribution
on {1, . . . , L} (i.e., µ = (1/L, . . . , 1/L)) by observing that if U ∼ U(0, 1),
then

P(⌈LU⌉ = 1) = P(LU ≤ 1) = P(U ≤ 1/L) = 1/L,

P(⌈LU⌉ = 2) = P(1 < LU ≤ 2) = P(1/L < U ≤ 2/L) = 2/L.

and so on. This suggests that ⌈LU⌉ is a random variable distributed uni-
formly on {1, . . . , L}.

Listing 1.13: Drawing uniformly from L values.

1 X = ceil(L * rand);

Drawing From A Discrete Distribution on a Small State Space

Simulating a Markov Chain

It is pretty straightforward to simulate finite state space Markov chains
(provided that the state space is not too big).

Algorithm 1.4.1 (Simulating a Markov Chain).

(i) Draw X0 from λ. Set i = 1.

(ii) Set Xi+1 = j with probability PXi,j.

(iii) Set i = i+ 1. If i < n repeat from step 2.

Example 1.4.4. We can simulate the following Markov chain, where λ =
(1/3, 1/3, 1/3) and

P =

1/2 1/4 1/4
0 0 1
2/3 1/3 0

 .

Listing 1.14: Matlab Code

1 n = 10^3; X = zeros(n,1);

2 X(1) = ceil(rand*3); i =1;

3 P = [1/2 1/4 1/4; 0 0 1; 2/3 1/3 0];

4 while i<n

5 X(i+1) = min(find(rand<cumsum(P(X(i),:))));

6 i = i+1;

7 end

28 CHAPTER 1. RANDOM WALKS ETC.

Unfortunately, in the case of Markov chains with big (or infinite) state
spaces, this approach does not work. However, there is often another way
to simulate such Markov chains. We have already seen one such example for
random walks.

1.4.2 Communication

It is very often the case that the distribution of Xn settles down to some
fixed value as n grows large. We saw this in example 1.4.2. In order to
talk about limiting behavior (and stationary distributions, which are closely
related) we need the transition matrix to posses certain properties. For this
reason, we introduce a number of definitions. We say that state i leads to

state j, written i → j, if

Pi(Xn = j for some n ≥ 0) > 0.

That is, if it is possible to get to j from i (though not necessarily in a single
step). Assuming that λi > 0, Pi(A) = P(A |X0 = i). If no λ is specified,
then assume that λi = 1.

Definition 1.4.5 (Communication). We say two states i, j ∈ X communi-

cate, denoted i ↔ j, if i → j and j → i.

Obviously, communicating is reflexive. That is, i → i for all i ∈ X . We
can partition the state space X into communicating classes as follows. We
say i and j are in the communicating class C if they communicate.

Example 1.4.6 (Communicating Classes). Consider the Markov chain with
the following graphical representation.

PICTURE HERE

There are two communicating classes C1 = {1, 2} and C2 = {3}. In full, we
have the following relationships. 1 ↔ 2, 1 → 3 and 2 → 3.

Definition 1.4.7 (Irreducibility). We say a transition matrix P is irreducible
if X is a single communicating class (if it is always possible to get from one
state to another, though not always in just 1 step).

1.4.3 The Strong Markov Property

An important and (slightly) stronger property than the normal Markov
property is the strong Markov property. To introduce this, we give our first
definition of a stopping time.

1.4. MARKOV CHAINS 29

Definition 1.4.8 (Stopping Time: Discrete Time Version). A random vari-
able τ → {0, 1, ...}∪{∞} is a stopping time if the event {τ = n} only depends
on X0, X1, . . . , Xn, for n ≥ 0.

Basically, in order for something to be a stopping time, we have to decide
it has happen or not without knowing the future. So, for example τ =
inf{n ≥ 0 : Xn = 1} is a stopping time, because we can tell when it occurs
without seeing into the future. On the other hand, τ = sup{n ≥ 0 : Xn = 1}
is not a stopping time for a random walk (we cannot tell when it happens
unless we know the future). Another example of something that is not a
stopping time is τ = inf{n ≥ 0 : Xn+1 = i}.

A stopping time that we have already encountered was the first passage
time for the random walk.

Theorem 1.4.9 (Strong Markov Property). Let {Xn}n≥0 be a (λ, P) Markov
chain and let τ be a stopping time of {Xn}n≥0. Then, conditional on τ < ∞
and Xτ = i, {Xτ+n}n≥0 is a (δi, P) Markov chain (δi is a distribution with 1
at state i and 0 everywhere else) and is independent of X0, X1, . . . , Xτ .

Proof. See [3] for a proof.

1.4.4 Recurrence and Transience

All states in a Markov chain have the property of being either recurrent
or transient.

Definition 1.4.10 (Recurrent). Given a Markov chain {Xn}n≥0 with tran-
sition matrix P , we say that a state i is recurrent if

Pi(Xn = i for infinitely many n) = 1.

Definition 1.4.11 (Transient). Given a Markov chain {Xn}n≥0 with tran-
sition matrix P , we say that a state i is transient if

Pi(Xn = i for infinitely many n) = 0.

In order to establish some important facts about recurrence and tran-
sience, we need the following result about expectations of non-negative inte-
ger valued random variables (random variables taking values in the natural
numbers).

Theorem 1.4.12. Given a random variable X taking values in N,

EX =
∞∑

i=0

P(X > i).

30 CHAPTER 1. RANDOM WALKS ETC.

Proof. We have

EX =
∞∑

x=1

xP(X = x) =
∞∑

x=1

x−1∑

i=0

P(X = x)

=
∞∑

i=0

∞∑

x=i+1

P(X = x) =
∞∑

i=0

P(X > i),

where we can swap sums because of the non-negative summands.

We also need to introduce a few stopping times.

Definition 1.4.13 (First Passage Time Including Return). We define the
first passage time into the state i (including the possibility of starting in i)
as

τ̃i = inf{n ≥ 1 : Xn = i}

Definition 1.4.14 (rth Passage Time). We define the rth passage time by

τ̃
(0)
i = 0 and

τ̃
(r+1)
i = inf{n < τ

(r)
i : Xn = i} for r ≥ 0.

We also define a sequence of random variables that are not stopping times
but describe the times between visits to state i.

Definition 1.4.15 (rth Excursion Length). We define the rth excursion
length as

S
(r)
i =

{
τ̃
(r)
i − τ̃

(r−1)
i if τ̃

(r−1)
i < ∞

0 otherwise
.

Lemma 1.4.16. For r ≥ 2, conditional on τ̃
(r−1)
i < ∞, S

(r)
i is independent

of {Xn}τ̃
(r−1)
i

n≥0 and

P(S
(r)
i = n | τ̃ (r−1)

i < ∞) = Pi(τ̃i = n).

Proof. If we use the strong Markov property with the stopping time τ =
τ̃
(r−1)
i , we get that {Xτ+n}n≥0 is a (δi, P) Markov property that is indepen-

dent of X0, . . . , Xτ . Now, we can write S
(r)
i as

S
(r)
i = inf{n > 0 : Xτ+n = i},

so S
(r)
i is the first passage time, including return, to state i for {Xτ+n}n≥0.

1.4. MARKOV CHAINS 31

We define the number of visits to state i by

Vi =
∞∑

n=0

I(Xn = i).

Let Ei be the expectation given that the process starts in state i.

Lemma 1.4.17. It holds that EiVi =
∑∞

n=0 P
n
i,i.

Proof.

EiVi = Ei

∞∑

n=0

I(Xn = i) =
∞∑

n=0

EiI(Xn = i) =
∞∑

n=0

Pi(Xn = i) =
∞∑

n=0

P n
i,i.

Lemma 1.4.18. For r ≥ 0, Pi(Vi > r) = (Pi(τ̃i < ∞))r .

Proof. When r = 0, this is clearly true. If it is true for r, then

Pi(Vi > r + 1) = Pi(τ̃
(r+1)
i < ∞) = Pi(τ̃

(r)
i < ∞ and S

(r+1)
i < ∞)

= Pi(S
(r+1)
i < ∞| τ̃ (r)i < ∞)Pi(τ̃

(r)
i < ∞) = Pi(τ̃i < ∞)Pi(τ̃

(r)
i < ∞).

Theorem 1.4.19. The following holds

(i) If Pi(τ̃{i} < ∞) = 1 then i is recurrent and
∑∞

n=0 P
n
i,i = ∞.

(ii) If Pi(τ̃{i} < ∞) < 1 then i is transient and
∑∞

n=0 P
n
i,i < ∞.

Proof. We prove the two statements separately.

Part 1. If Pi(τ̃i < ∞) = 1 then Pi(Vi = ∞) = limr→∞ Pi(Vi > r). By lemma
1.4.18,

lim
r→∞

Pi(Vi > r) = lim
r→∞

(Pi(τ̃i < ∞))r = 1,

so i is recurrent. If Pi(Vi = ∞) = 1 then EiVi = ∞. Now, by lemma 1.4.17,

∞∑

n=0

P n
i,i = EiVi = ∞.

32 CHAPTER 1. RANDOM WALKS ETC.

Part 2. If Pi(τ̃i < ∞) < 1 then

Pi(Vi = ∞) = lim
r→∞

Pi(Vi > r) = lim
r→∞

(Pi(τ̃i < ∞))r = 0,

so i is transient. Now,

∞∑

n=0

P n
i,i = EiVi =

∞∑

r=0

Pi(Vi > r) =
∞∑

r=0

(Pi(τ̃i < ∞))r =
1

1− Pi(τ̃ < ∞)
< ∞.

Theorem 1.4.20. Let C be a communicating class. Then either all states
in C are transient or all are recurrent.

Proof. Take a pair of states i and j in C and assume i is transient. Because
i and j are in the same communicating class, there must exist n ≥ 0 and
m ≥ 0 so that P n

i,j > 0 and Pm
j,i > 0. Now, it must be the case that

P n+r+m
i,i ≥ P n

i,jP
r
j,jP

m
j,i

as this only describes the probability of one possible path from i back to i
(such a path need not pass through j). Rearranging, we have

P r
j,j ≤

P n+r+m
i,i

P n
i,jP

m
j,i

.

Summing over r we get

∞∑

r=0

P r
j,j ≤

∑∞
r=0 P

n+r+m
i,i

P n
i,jP

m
j,i

.

Now, because i is assumed to be transient,
∑∞

r=0 P
n+r+m
i,i < ∞. As a result,∑∞

r=0 P
r
j,j < ∞, implying j is also transient. Thus, the only way a state can

be recurrent is if all states are recurrent.

Definition 1.4.21 (Closed Class). A communicating class C is closed if
i ∈ C and i → j implies j ∈ C.

Theorem 1.4.22. Every finite closed class is recurrent.

Proof. See [3].

As an irreducible Markov chain consists of one single closed class, this
implies that all irreducible Markov chains on finite state spaces are recurrent.

1.4. MARKOV CHAINS 33

Recurrence of Random Walks

We can use the criteria given in theorem 1.4.19 to establish facts about
the recurrence properties of random walks. In order to establish recurrence,
we would need

∑∞
n=0 P

n
0,0 = ∞. Thus, a first step is to find an expression

for P n
0,0. As we have already discussed, a random walk starting at 0 can only

return to 0 in an even number of steps. Thus, it is sufficient for us to consider
P 2n
0,0. Now in order for a random walk to end up at 0 after 2n steps, it needs

to take exactly n up steps and n down steps. There are
(
2n
n

)
ways of taking

this many steps. This gives

P 2n
0,0 =

(
2n

n

)
pn(1− p)n.

Lemma 1.4.23. The following bounds on n! hold of n ≥ 1.√
2π nn+1/2 e−n ≤ n! ≤ e nn+1/2 e−n

Given these bounds on n! it is relatively straightforward to get bounds
on P n

0,0 that allow us to establish the transience or recurrence of the random
walk.

Theorem 1.4.24. A symmetric random walk (i.e., a random walk with
p = (1− p) = 1/2) is recurrent.

Proof. To show the random walk is recurrent, we need to show
∞∑

n=0

P 2n
0,0 = ∞.

The first step is to get a bound on
(
2n
n

)
. By lemma 1.4.23, we have

(
2n

n

)
=

(2n)!

n!n!
≥

√
2π 2n2n+1/2 e−2n

e nn+1/2 e−ne nn+1/2 e−n
=

2
√
π4n

e2
√
n
.

So, we can bound the probabilities from below by

P 2n
0,0 ≥

2
√
π

e2
(4p(1− p))n√

n
.

This implies that
∞∑

n=0

P 2n
0,0 ≥

2
√
π

e2

∞∑

n=0

(4p(1− p))n√
n

.

If p = (1− p) then 4p(1− p) = 1, so
∞∑

n=0

P 2n
0,0 ≥ C

∞∑

n=0

1√
n
= ∞,

where C > 0 is a constant.

34 CHAPTER 1. RANDOM WALKS ETC.

1.4.5 Invariant Distributions

A topic of enormous interest, especially from a simulation perspective, is
the behavior of the distribution of a Markov chain, {Xn}n≥0 as n becomes
large. It turns out there are actually a few different things we can mean by
this. The best possible situation is that a Markov chain can have a limiting

distribution. That is, there can exist a distribution, π, such that {Xn}n≥0 →
π as n → ∞ no matter what initial distribution, λ, we choose. We will
discuss the conditions for a limiting distribution to exist later. It turns out,
however, that even if a limiting distribution does not exist, the Markov chain
may have a unique stationary distribution, sometimes also called an invariant

distribution or an equilibrium distribution. This is a distribution, π, such that
πP = π.

Definition 1.4.25 (Stationary Distribution). An invariant distribution of a
Markov chain with transition matrix P is a distribution that satisfies

πP = π.

The importance of stationary distributions is made clear by the following
lemma.

Lemma 1.4.26. Let {Xn}n≥0 be Markov (π, P) and suppose π is a station-
ary distribution for P , then Xn ∼ π for all n ≥ 0.

Proof. The distribution of Xn is given by πP n. Now, for n = 0 (where we
define P 0 = I) it is clearly true that πP n = π. We just need to show
πP n = π for n > 1. We do this by induction. That is, assume πP n = π.
Then

πP n+1 = (πP)P n = πP n = π

by assumption. Thus, as this is true for n = 0, the result follows.

The obvious questions to ask when faced with a nice and interesting object
like a stationary distribution are: does one exist? and, if so, is it unique?.
The simple answer is that it is often the case that there is a unique stationary
distribution (at least for many of the Markov chains we might be interested
in), but that a number of conditions need to be fulfilled. One of these is
positive recurrence.

Recurrent implies that if the Markov chain starts in state i it will return
to state i with probability 1. However, this is no guarantee that the expected
return time is finite. Recall that mi = Eiτ̃i, where τ̃i = inf{n > 0 : Xn = i}.
Definition 1.4.27 (Positive Recurrence). We say a Markov chain is positive
recurrent if mi < ∞.

1.4. MARKOV CHAINS 35

Definition 1.4.28 (Null Recurrence). We say a Markov chain is null recur-
rent if mi = ∞.

It is straightforward to establish that if a Markov chain is irreducible and
has a finite state space (i.e. |X | < ∞), then every state is positive recurrent.
It is not always easy to show that an infinite state space Markov chain has
such a property.

Now that we have defined positive recurrence, we are able to give condi-
tions that guarantee a Markov chain has a unique stationary distribution.

Theorem 1.4.29. Let P be irreducible. Then the following are equivalent:

(i) Every state is positive recurrent.

(ii) Some state i is positive recurrent.

(iii) P has a (unique) invariant distribution, π, and mi = 1/πi.

Proof. See [3].

Note that it is possible for a Markov chain to have a stationary distribu-
tion but not satisfy these conditions.

Example 1.4.30 (Calculating a stationary distribution). We can find a sta-
tionary distribution by solving πP = π. For example, consider the following
Markov chain

P =

0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 .

So, we need to solve

(π1, π2, π2)

0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 = (π1, π2, π2). (1.3)

This gives the following linear system

1

2
π2 +

1

2
π3 = π1

1

2
π1 +

1

2
π3 = π2

1

2
π1 +

1

2
π2 = π3.

Solving this, we have π1 = π2 = π3. As we need π1 + π2 + π3 = 1 if π is to
be a distribution, we have π1 = π2 = π3 = 1/3.

36 CHAPTER 1. RANDOM WALKS ETC.

1.4.6 Limiting Distribution

The fact that a Markov chain has a unique stationary distribution does
not guarantee that it has a limiting distribution. This can be shown using a
simple example.

Example 1.4.31 (A Markov chain with a stationary distribution but no
limiting distribution). Consider the Markov chain with graph

PICTURE HERE.

The transition matrix is given by

[
0 1
1 0

]

This chain is clearly irreducible and positive recurrent, so it has a unique
stationary distribution, π = (1/2, 1/2). However, P 2n = I and P 2n+1 = P .
This means that if we start with certainty in a given state the distribution
will not converge. For example, if λ = δi = (1, 0), then limn→∞ λP 2n = (1, 0)
and limn→∞ λP 2n+1 = (0, 1). Thus, no limit exists.

The problem with the Markov chain in example 1.4.31 is that it is pe-
riodic: it is only possible to get from state 1 back to state 1 in an even
number of steps. In order for a Markov chain to have a limiting distribution,
it should not have any periodicity. Unsurprisingly, this requirement is called
aperiodicity.

Definition 1.4.32. A state is said to be aperiodic if P n
i,i > 0 for all sufficiently

large n. Equivalently, the set {n ≥ 0 : P n
i,i > 0} has no common divisor other

than 1.

In a irreducible Markov chain, all states are either aperiodic or periodic.

Theorem 1.4.33. Suppose P is irreducible and has an aperiodic state i.
Then, all states are aperiodic.

A random walk is periodic with period 2.

Example 1.4.34.
PICTURE HERE.

PICTURE HERE.

If a Markov chain is irreducible, positive recurrent and aperiodic, then it
has a limiting distribution.

1.4. MARKOV CHAINS 37

Theorem 1.4.35. Let P be irreducible and aperiodic and suppose P has an
invariant distribution π. Let λ be any distribution. and suppose {Xn}n≥0

is Markov (λ, P). Then, P(Xn = j) → πj as n → ∞ for all j ∈ X . In
particular, P n

i,j → πj as n → ∞ for all i, j ∈ X .

Proof. See [3].

1.4.7 Reversibility

Stationary distributions play a number of very important roles in simula-
tion. In particular, we often wish to create a Markov chain that has a spec-
ified stationary distribution. One important tool for finding such a Markov
chain is to exploit a property called reversibility. Not all Markov chains are
reversible but, as we shall see, those that are have some nice properties.

Definition 1.4.36. Let {Xn}n≥0 be a Markov (π, P) with P irreducible. We
say that {Xn}n≥0 is reversible if, for all N ≥ 1, {XN−n}Nn=0 is also Markov
(π, P).

The most important property of reversible Markov chains is that they
satisfy the detailed balance equations.

Definition 1.4.37. A matrix P and a measure ν (a vector will all non-
negative components) are in detailed balance if

νiPi,j = νjPj,i ∀i, j ∈ X .

The detailed balance equations are important because they allow us to
find stationary distributions (and, as we will learn later, construct transition
matrices with given stationary distributions).

Lemma 1.4.38. If P and the distribution π are in detailed balance, then π

is invariant for P .

Proof. We have

(πP)i =
∑

j∈X

πjPj,i =
∑

j∈X

πiPi,j = πi.

The following theorem shows that reversibility is equivalent to satisfying
the detailed balance equations.

38 CHAPTER 1. RANDOM WALKS ETC.

Theorem 1.4.39. Let P be an irreducible stochastic matrix and let π be
a distribution. Suppose {Xn}n≥0 is Markov (π, P). Then, the following are
equivalent.

(i) {Xn}n≥0 is reversible.

(ii) P and π are in detailed balance (i.e., π is the stationary distribution
of P).

Proof. See [3].

Random Walks on Graphs

Given a graph with a finite number of vertices, labeled 1, . . . , L, each with
finite degree (i.e., d1 < ∞, . . . , dL < ∞), we can define a random walk with
the following transition probabilities

Pi,j =

{
1
di

if there is an edge between i and j

0 otherwise
.

Example 1.4.40 (A random walk on a graph). Consider the following graph.

PICTURE HERE.

Using the above transition probabilities, we have the Markov chain

PICTURE HERE.

If a graph is connected, then a random walk on it will be irreducible.
Given a connected graph, it is easy to establish the stationary distribution
of the resulting random walk using the detailed balance equations.

Lemma 1.4.41. For connected graphs with
∑

i di < ∞ we have

πi =
di∑
i∈X di

.

Proof. We just need to confirm that the detailed balance equations hold and
that the probabilities sum to 1. First, observe that

di∑
i∈X di

1

di
=

dj∑
i∈X dj

1

dj
holds for all i, j ∈ X .

Now, pretty clearly,
∑

i∈X πi = 1, so we are done.

1.4. MARKOV CHAINS 39

Example 1.4.42 (A random walk on a graph (cont.)). For the graph given
in example 1.4.40, we have

d1 + d2 + d3 + d4 = 2 + 3 + 3 + 2 = 10.

Thus,
π1 = 2/10, π2 = 3/10, π3 = 3/10, π4 = 2/10.

1.4.8 The Ergodic Theorem

The ergodic theorem is something like the strong law of large numbers
for Markov chains. It tells us the sample averages converge to expected
values almost surely. In addition, the second part of the theorem is very
useful practically as it is often the case that we are not directly interested
in a Markov chain, {Xn}n≥0, but rather in the behavior of some stochastic
process {Yn}n≥0, where Yn = f(Xn) and f is a deterministic function. For
example {Xn}n≥0 could be a Markov chain describing the weather and f
could be a function describing how much electricity is consumed by a town
(on average) under certain weather conditions. We might then be interested
in the average power consumption, which we could estimate by the sample
average

Sn =
1

n

n∑

k=0

f(Xk).

The ergodic theorem guarantees that such sample averages converge to the
correct expected values.

Definition 1.4.43 (Number of visits to i before time n). We define the
number of visits to i before time n by

Vi(n) =
n−1∑

k=0

I(Xk = i).

Theorem 1.4.44 (Ergodic Theorem). Let {Xn}n≥0 be Markov (λ, P), where
P is an irreducible transition matrix and λ is an arbitrary initial distribution.
Then,

P

(
Vi(n)

n
→ 1

mi

as n → ∞
)

= 1.

If, in addition, P is positive recurrent, then for any bounded function f :
X → R,

P

(
1

n

n−1∑

k=0

f(Xk) →
∑

i∈X

πif(i) as n → ∞
)

= 1,

where π is the stationary distribution of P .

40 CHAPTER 1. RANDOM WALKS ETC.

Proof.

Part 1. If P is transient, then the chain will only return to state i a finite
number of times. This means that

Vi(n)

n
≤ Vi

n
→ 0 =

1

mi

.

Now, consider the recurrent case. For a given state i, we have P(τ̃i < ∞) = 1.
Using the strong Markov property, the Markov chain {Xτ̃i+n}n≥0 is Markov
(δi, P) and independent of X0, . . . , Xτ̃i . As the long run proportion of time
spend in i is the same for {Xn}n≥0 and {Xτ̃i+n}n≥0, we are safe to assume
that the chain starts in i.

Now, by time n − 1, the chain will have made at most V (n) visits to i.
It will certainly have made at least V (n)− 1 visits. The total length of time
required to make all these visits must be less than or equal to n−1 (because,
by definition, all these visits occur within the first n− 1 steps). This means
that

S
(1)
i + · · ·+ S

(Vi(n)−1)
i ≤ n− 1.

By a similar argument,

n ≤ S
(1)
i + · · ·+ S

(Vi(n))
i .

Using these bounds, we have

S
(1)
i + · · ·+ S

(Vi(n)−1)
i

Vi(n)
≤ n

Vi(n)
≤ S

(1)
i + · · ·+ S

(Vi(n))
i

Vi(n)
.

Now, we know the the excursion lengths are i.i.d. random variables (with
finite mean mi), so, by the large of large numbers,

P

(
S
(1)
i + · · ·+ S

(n)
i

n
→ mi as n → ∞

)
= 1.

Now, we know that P(Vi(n) → ∞ as n → ∞) = 1. So, letting n → ∞, we
squeeze n/Vi(n) to get

P

(
n

Vi(n)
→ mi as n → ∞

)
= 1.

This implies that

P

(
Vi(n)

n
→ 1

mi

as n → ∞
)

= 1.

Part 2. See [3].

1.5. EXTENDING THE RANDOM WALK MODEL 41

1.5 Extending the Random Walk Model

1.5.1 Sums of Independent Random Variables

If we consider a random walk with x0 = 0, we can define it by

Xn =
n∑

i=1

Zi,

where the {Zi}i≥1 are i.i.d. random variables with

P(Z1 = 1) = 1− P(Z1 = −1) = p.

If we replace the {Zi}i≥1 with an arbitrary sequence of independent ran-
dom variables, {Yi}i≥1 we are in the setting of sums of independent random
variables. That is, we consider

Sn =
n∑

i=1

Yi.

Now, in the case of a random walk, which is a sum of the {Zi}i≥1 random
variables, we know the distribution of Sn (we calculated this earlier). How-
ever, this is not always the case. Normally, in order to find the distribution
of a sum of n random variables, we have to calculate an n-fold convolution or
use either moment generating functions or characteristic functions and hope
that things work out nicely.

Recall, given two independent random variables, X and Y , the convolu-
tion of the distributions of X and Y is given by

P(X + Y = z) =
∞∑

x=−∞

P(X = x)P(Y = z − x)

=
∞∑

y=−∞

P(X = z − y)P(Y = y)

in the discrete case and the convolution, h, of the density of X, f , and the
density of Y , g, is given by

h(z) = (f ∗ g)(z) =
∫ ∞

−∞

f(x)g(z − x)dx =

∫ ∞

−∞

f(z − y)g(y)dy

in the continuous case. It is easy to see that the calculations can be pretty
messy if lots of variables with different distributions are involved.

42 CHAPTER 1. RANDOM WALKS ETC.

Sometimes, things are nice. For example, the sum of independent normal
random variables is normally distributed and the sum of i.i.d. exponential
random variables is distributed according to a special case of the gamma
distribution (called the Erlang distribution). But most things are not so
nice. For example, try to work out the distribution of n exponential random
variables with parameters λ1, . . . , λn.

There are various tools in mathematics that help us deal with sums of
independent random variables. For example, we have the Lindeberg central
limit theorem and a version of the strong law of large numbers. However,
these do not answer all the questions we might reasonably ask and there are
lots of random variables that do not satisfy the technical conditions of these
theorems. Simulation is a useful tool for solving problems in these settings.

We will consider a couple of examples that use normal random variables.
Recall that if Z ∼ N(0, 1) then X = µ+ σZ ∼ N(µ, σ2). This means we can
simulate a normal random variable with mean µ and variance σ2 in Matlab
using the command

X = mu + sqrt(sigma_sqr) * randn;

Another new concept in the examples is relative error.

Definition 1.5.1 (Relative Error). The relative error of an estimator ℓ̂ is
defined by

RE =

√
Var(ℓ̂)

ℓ
.

Basically, the relative error tell us the size of our estimator’s error as a
percentage of the thing we are tying to estimate (i.e., if we have a relative
error of 0.01, that means that the standard deviation of our estimator is
about 1 percent of ℓ). The relative error is often a more meaningful measure
of error in settings where the thing we are trying to estimate, ℓ, is small. In
practice, the relative error needs to be estimated.

Example 1.5.2 (Sums of log-normal random variables). Consider a port-
folio consisting of n stocks (which, for some reason, are independent of one
another). At the start of the year, the stocks all have value 1. The changes in
value of these stocks over a year are given by the random variables V1, . . . , Vn,
which are log-normal random variables, i.e., V1 = eZ1 , ., Vn = eZn with
Z1 ∼ N(µ1, σ

2
1), · · · , Z1 ∼ N(µn, σ

2
n). It is not so straightforward to calculate

the distribution of Sn = V1 + · · ·+ Vn.
If n = 5, with µ = (−0.1, 0.2,−0.3, 0.1, 0) and σ2 = (0.3, 0.3, 0.3, 0.2, 0.2),

what is the probability that the portfolio is worth more than 20 at the

1.5. EXTENDING THE RANDOM WALK MODEL 43

end of the year? It is straightforward to use Monte Carlo to get an es-
timate of ℓ = P(Sn > 20). Here, we check that the mean and variance
of our simulation output correspond to the theoretical mean and variance
(it never hurts to check things seem to be working properly). The mean
of a log-normal random variable is given by exp{µ + σ2/2} and the vari-
ance is given by (exp{σ2} − 1)exp{2µ + σ2}. In addition, we estimate
E [max(V1, . . . , V5) |S5 > 20] (that is, the average value of the largest portfolio
component when the portfolio has a value bigger than 20) and E [S5 |S5 > 20].

Listing 1.15: Matlab code

1 N = 5*10^7; S = zeros(N,1); threshold = 20;

2 V_max = zeros(N,1); V_mean = zeros(N,1);

3

4 mu = [-0.1 0.2 -0.3 0.1 0]; sigma_sqr = [.3 .3 .3 .2 .2];

5

6 for i = 1:N

7 Z = mu + sqrt(sigma_sqr) .* randn(1,5);

8 V = exp(Z);

9 V_max(i) = max(V);

10 S(i) = sum(V);

11 end

12

13 est_mean = mean(S)

14 actual_mean = sum(exp(mu + sigma_sqr/2))

15

16 est_var = var(S)

17 actual_var = sum((exp(sigma_sqr) - 1) .* exp(2 * mu + sigma_sqr))

18

19 ell_est = mean(S>threshold)

20 ell_RE = std(S>threshold) / (ell_est * sqrt(N))

21

22 [event_occurs_index dummy_var] = find(S > threshold);

23 avg_max_v = mean(V_max(event_occurs_index))

24 avg_S = mean(S(event_occurs_index))

Running this one time produced the following output

est_mean = 5.6576

actual_mean = 5.6576

est_var = 1.9500

actual_var = 1.9511

ell_est = 2.3800e-06

ell_RE = 0.0917

44 CHAPTER 1. RANDOM WALKS ETC.

avg_max_v = 15.9229

avg_S = 21.5756

Notice that, on average, the rare event seems to be caused by a single
portfolio component taking a very large value (rather than all the portfolio
components taking larger than usual values). This is typical of a class of
random variables called heavy tailed random variables, of which the log-
normal distribution is an example.

Example 1.5.3 (A gambler’s ruin problem). Consider an incompetent busi-
nessman. His company starts off with AC10000 but makes a loss, on aver-
age, each day. More precisely, the profit or loss on the ith day is given by
Yi ∼ N(−20, 10000). If his company can get AC11000 in the bank, he is able
to sell his company to a competitor. If his company’s bank account drops
below AC0 he goes bankrupt. What is the probability that he is able to sell
the company?

We can formulate this as a problem about hitting times. Define Sn =∑n
i=1 Yi, as the company bank account (minus the initial AC10000) on the nth

day. Define the time at which he can sell by

τS = inf{n ≥ 1 : Sn ≥ 1000}

and the time at which he can go bankrupt by

τB = inf{n ≥ 1 : Sn ≤ −10000}.

We want to know ℓ = P(τS < τB). This is easy to simulate, we just increase
n by one until either Sn ≤ −10000 or Sn ≥ 1000. We might as well find out
E [τS | τS < τB] and E [τB | τB < τS] while we are doing that.

Listing 1.16: Matlab code

1 N = 10^7; sold = zeros(N,1); days = zeros(N,1);

2 mu = -20; sigma_sqr = 10000; sigma = sqrt(sigma_sqr);

3 up = 1000; low = -10000;

4

5 for i = 1:N

6 S = 0; n = 0;

7 while S > low && S< up

8 S = S + (mu + sigma * randn);

9 n = n + 1;

10 end

11 sold(i) = S > up;

12 days(i) = n;

1.6. IMPORTANCE SAMPLING 45

13 end

14

15 ell_est = mean(sold)

16 est_RE = sqrt(sold) / (sqrt(N)*ell_est)

17

18 [event_occurs_index dummy_var] = find(sold == 1);

19 [event_does_not_occur_index dummy_var] = find(sold == 0);

20

21 avg_days_if_sold = mean(days(event_occurs_index))

22 avg_days_if_bankrupt = mean(days(event_does_not_occur_index))

Running this one time produced the following output

ell_est = 0.0145

ell_RE = 0.0026

avg_days_if_sold = 52.9701

avg_days_if_bankrupt = 501.5879

1.6 Importance Sampling

In examples 1.5.2 and 1.5.3, the probabilities we were interested in were
quite small. Estimating such quantities is usually difficult. If you think about
it, if something only happens on average once every 106 times, then you will
need a pretty big sample size to get many occurrences of that event. We can
be a bit more precise about this. Consider the relative error of the estimator
ℓ̂ for ℓ = P(X > γ) = EI(X > γ). This is of the form

RE =

√
P(X > γ) (1− P(X > γ))

P(X > γ)
√
N

.

So, for a fixed RE, we need

√
N =

√
P(X > γ) (1− P(X > γ))

P(X > γ)RE
⇒ N =

1− P(X > γ)

P(X > γ)RE2 .

So N = O(1/P(X > γ)) which means N gets big very quickly as ℓ = P(X >
γ) → 0. This is a big problem in areas where events with small probabilities
are important. There are lots of fields where such events are important: for
example, physics, finance, telecommunication, nuclear engineering, chemistry
and biology. One of the most effective methods of estimating these probabil-
ities is called importance sampling.

46 CHAPTER 1. RANDOM WALKS ETC.

In the case of sums of independent random variables, the basic idea is
to change the distributions of the random variables so that the event we are
interested in is more likely to occur. Of course, if we do this, we will have a
biased estimator. So, we need a way to correct for this bias. It is easiest to
describe these things using continuous random variables and densities but, as
we will see in the examples, everything works for discrete random variables
as well.

Consider a random variable X taking values in R with density f . Suppose
we wish to estimate ℓ = ES(X). Note that we can write

ES(X) =

∫ ∞

−∞

S(x) f(x) dx.

Now, this suggests the natural estimator

ℓ̂ =
1

N

N∑

i=1

S(X(i)),

where X(1), . . . , X(N) are i.i.d. draws from the density f . Now, suppose
the expectation of S(X) is most influenced by a subset of values with low
probability. For example, if S(X) = I(X > γ) and P(X > γ) is small,
then this set of values would be {x ∈ X : S(x) > γ}. We want to find a
way to make this ‘important’ set of values happen more often. This is the
idea of importance sampling. The idea is to sample {X(i)}Ni=1 according to
another density, g, that ascribes much higher probability to the important
set. Observe that, given a density g such that g(x) = 0 ⇒ f(x)S(x) = 0,
and being explicit about the density used to calculate the expectation,

EfS(X) =

∫ ∞

−∞

S(x) f(x) dx =

∫ ∞

−∞

S(x)
g(x)

g(x)
f(x) dx

=

∫ ∞

−∞

S(x)
f(x)

g(x)
g(x) dx = Eg

f(X)

g(X)
S(X).

We call f(x)/g(x) the likelihood ratio. This suggests, immediately, the im-
portance sampling estimator

Definition 1.6.1 (The Importance Sampling Estimator). The importance

sampling estimator, ℓ̂IS, of ℓ = ES(X) is given by

ℓ̂IS =
1

N

N∑

i=1

f(X(i))

g(X(i))
S(X(i)),

where the {X(i)}Ni=1 are i.i.d. draws from the importance sampling density
g.

1.6. IMPORTANCE SAMPLING 47

Because we wish to use this estimator for variance reduction, it makes
sense for us to calculate its variance.

Lemma 1.6.2. The variance of the importance sampling estimator, ℓ̂IS, is
given by

Var(ℓ̂IS) =
1

N

(
Ef

[
f(X)

g(X)
S(X)2

]
− ℓ2

)
.

Proof. We have that

Var(ℓ̂IS) =
1

N
Var

(
f(X)

g(X)
S(X)

)

=
1

N

(
Eg

[
f(X)2

g(X)2
S(X)2

]
−
(
Eg

f(X)

g(X)
S(X)

)2
)

=
1

N

([∫ ∞

−∞

f(x)2

g(x)2
S(x)2 g(x) dx

]
− ℓ2

)

=
1

N

([∫ ∞

−∞

f(x)

g(x)
S(x)2 f(x) dx

]
− ℓ2

)

=
1

N

(
Ef

[
f(X)

g(X)
S(X)2

]
− ℓ2

)

Comparing Var(ℓ̂), the variance of the normal Monte Carlo estimator, to

Var(ℓ̂IS), the variance of the importance sampling estimator, we see that

Var(ℓ̂IS) < Var(ℓ̂) ⇔ Ef

[
f(X)

g(X)
S(X)2

]
< EfS(X)2.

When we are estimating probabilities, S(x) is an indicator function. For
example, it could be S(x) = I(x > γ). Then,

ES(X) = P(X > γ) = EI(X > γ) = EI(X > γ)2 = ES(X)2,

so the condition above reduces to requiring that Ef

[
f(X)
g(X)

S(X)2
]
< ℓ.

The above technology is easily combined to problems involving discrete
random variables. Just replace integrals with sums and densities with prob-
ability mass functions.

Example 1.6.3 (Importance sampling with a normal random variable).
Consider the problem of estimating ℓ = P(X > γ), where X ∼ N(0, 1).

48 CHAPTER 1. RANDOM WALKS ETC.

If γ is big, for example γ = 5, then ℓ is very small. The standard estimator
of ℓ = P(X > γ) is

ℓ̂ =
1

N

N∑

i=1

I
(
X(i) > γ

)
,

where the {X(i)}Ni=1 are i.i.d. N(0, 1) random variables. This is not a good
estimator for large γ. We can code this as follows.

Listing 1.17: Matlab code

1 gamma = 5; N = 10^7;

2 X = randn(N,1);

3 ell_est = mean(X > gamma)

4 RE_est = std(X > gamma) / (sqrt(N) * ell_est)

For γ = 5 with a sample size of 107, an estimate of the probability is 2×10−7

and an estimate of the relative error is 0.7071. So, this problem is a good
candidate for importance sampling. An obvious choice of an importance
sampling density is a normal density with variance 1 but with mean γ. The
likelihood ratio f(x)/g(x) is given by

f(x)

g(x)
=

(√
2π
)−1

exp{−1
2
x2}

(√
2π
)−1

exp{−1
2
(x− γ)2}

= exp

{
γ2

2
− xγ

}
.

Thus, the estimator will be of the form

ℓ̂IS =
1

N

N∑

i=1

exp

{
γ2

2
−X(i)γ

}
I
(
X(i) > γ

)
,

where the {X(i)}Ni=1 are i.i.d. N(γ, 1) random variables. The code for this
follows.

Listing 1.18: Matlab code

1 gamma = 5; N = 10^7;

2 X = gamma + randn(N,1);

3 values = exp(gamma^2 / 2 - X*gamma) .* (X > gamma);

4 ell_est = mean(values)

5 RE_est = std(values) / (sqrt(N) * ell_est)

For γ = 5 with a sample size of 107 an estimate of the probability is 2.87×10−7

and an estimate of the relative error is 7.53 × 10−4. We can check the true
value in this case using the Matlab command

1 - normcdf(5)

1.6. IMPORTANCE SAMPLING 49

This gives a value of 2.87× 10−7 which is more or less identical to the value
returned by our estimator.

If we have a sum of n independent variables, X1, . . . , Xn, with densities
f1, . . . , fn, we can apply importance sampling using densities g1, . . . , gn. We
would then have a likelihood ratio of the form

n∏

i=1

fi(x)

gi(x)
.

Everything then proceeds as before.

Example 1.6.4 (A rare event for a random walk). Given a random walk,
{Xn}n≥0, with x0 = 0 and p = 0.4, what is ℓ = P(X50 > 15)? We can
estimate this in Matlab using standard Monte Carlo.

Listing 1.19: Matlab code

1 N = 10^5; threshold = 15;

2 n = 50; p = 0.4; X_0 = 0;

3 X_50 = zeros(N,1);

4

5 for i = 1:N

6 X = X_0;

7 for j = 1:n

8 Y = rand <= p;

9 X = X + 2*Y - 1;

10 end

11 X_50(i) = X;

12 end

13 ell_est = mean(X_50 > threshold)

14 RE_est = std(X_50 > threshold) / (sqrt(N) * ell_est)

Running this program once, we get an estimated probability of 1.2×10−4

and an estimated relative error of 0.29. This is not so great, so we can try
using importance sampling. A good first try might be to simulate a random
walk, as before, but with another parameter, q = 0.65. If we write

Xn =
n∑

i=1

Zi,

then, the original random walk is simulated by generating the {Zi}i≥1 ac-
cording to the probability mass function p I(Z = 1) + (1 − p) I(Z = −1).
Generating the new random walk means generating the {Zi}i≥1 according to

50 CHAPTER 1. RANDOM WALKS ETC.

the probability mass function q I(Z = 1)+(1−q) I(Z = −1). This then gives
a likelihood ratio of the form

n∏

i=1

p I(Zi = 1) + (1− p) I(Zi = −1)

q I(Zi = 1) + (1− q) I(Zi = −1)
=

n∏

i=1

[
p

q
I(Zi = 1) +

1− p

1− q
I(Zi = −1)

]
.

We can implement the estimator in Matlab as follows.

Listing 1.20: Matlab code

1 N = 10^5; threshold = 15;

2 n = 50; p = 0.4; X_0 = 0; q = 0.65;

3 X_50 = zeros(N,1); LRs = zeros(N,1);

4

5 for i = 1:N

6 X = X_0; LR = 1;

7 for j = 1:n

8 Y = rand <= q;

9 LR = LR * (p/q * (Y == 1) + (1-p) / (1 - q) * (Y == 0));

10 X = X + 2*Y - 1;

11 end

12 LRs(i) = LR;

13 X_50(i) = X;

14 end

15 ell_est = mean(LRs .* (X_50 > threshold))

16 RE_est = std(LRs .* (X_50 > threshold)) / (sqrt(N) * ell_est)

Running this program, we get an estimated probability of 1.81× 10−4 and a
relative error of 0.0059. We can check this makes sense by using the standard
Monte Carlo estimator with a much bigger sample size. Using a sample size
of N = 108, we get an estimate of 1.81 × 10−4, confirming the importance
sampling gives the right result.

Rules of Thumb for Effective Importance Sampling

Recall the definition of a moment generating function.

Definition 1.6.5 (Moment Generating Function). We define the moment
generating function of a random variable X by

M(θ) = EeθX .

For θ = 0, M(θ) = 1. However, for other values of θ, it may not be
the case that M(θ) < ∞. In order for M(θ) to be finite for some θ 6=
0, the probability of X taking very large (or small) values has to go to

1.6. IMPORTANCE SAMPLING 51

zero exponentially fast. This leads to the definition of light-tailed random
variables. Usually, people assume that light-tailed means right light-tailed.

Definition 1.6.6 (Light-tailed random variable). We say a random variable
X is (right) light-tailed if M(θ) < ∞ for some θ > 0. We say X is left
light-tailed if M(θ) < ∞ for some θ < 0.

The rules of thumb, which only apply when dealing with light-tailed ran-
dom variables, are as follows.

• For sums of i.i.d. random variables, e.g., P(X1 + · · ·+Xn > γ) choose
the importance sampling density, g, so that EgX1 = γ/n.

• For stopping time problems, e.g., P(τA < τB) or P(τA < ∞), where
the process is drifting away from A, the set of interest, choose g so
that the drift of the stochastic process is reversed. For example, if
A = {10, 11, . . .} and Sn =

∑n
i=1 Yi, with Yi ∼ N(−1, 1), then choose g

so that EgZ1 = 1.

1.6.1 Weighted Importance Sampling

If is often the case that we wish to estimate ℓ = EfS(X) without knowing
everything about the density f . For example, a density can be written as

f(x) =
h(x)

Z
,

where Z is the normalizing constant (that is Z =
∫
h(x) dx). In many

realistic applications, we do not know Z, even if we do know h and have a
way of sampling from f (it is often possible to sample from a density without
knowing its normalizing constant). An obvious problem, then, is how we
should carry out importance sampling in such a setting.

Weighted importance sampling is one way of addressing this problem. The
normal importance sampling estimator is of the form

ℓ̂IS =
1

N

N∑

i=1

f(X(i))

g(X(i))
S(X(i)),

where X(1), . . . ,X(N) is an i.i.d. sample from g. This returns a sample mean
that is weighted by the likelihood ratios

f(X(1))

g(X(1))
, . . . ,

f(X(N))

g(X(N))
.

52 CHAPTER 1. RANDOM WALKS ETC.

The idea of weighted importance sampling is to use another weight, which is
of the form

W (x) =
h(x)

g(x)
.

Instead of using the standard importance sampling estimator, we now have
to use an estimator of the form

ℓ̂WIS =
1
N

∑N
i=1 W

(
X(i)

)
S
(
X(i)

)

1
N

∑N
i=1 W (X(i))

,

with X(1), . . . ,X(N) an i.i.d. sample from g.
Now,

EgW (X)S(X) = Eg
h(X)

g(X)
S(X) =

∫
h(x)

g(x)
S(x)g(x) dx

= Z

∫
h(x)

Z
S(x) dx = Z EfS(X).

Likewise,

EgW (X) = Eg
h(X)

g(X)
=

∫
h(x)

g(x)
g(x) dx = Z

∫
h(x)

Z
dx = Z.

Thus, by the strong law of large numbers, we get in the limit that

lim
N→∞

1
N

∑N
i=1 W

(
X(i)

)
S
(
X(i)

)

1
N

∑N
i=1 W (X(i))

→ Z EfS(X)

Z
= EfS(X).

Note that this estimator is biased. However, the bias is O(1/n), so it is not
too bad in practice (and we don’t always have an alternative).

1.6.2 Sequential Importance Sampling

So far, when we have considered a problem like ℓ = P(X10 > 5), we have
considered a process that can be written as a sum of independent random
variables. For example

Xn =
n∑

i=1

Yi,

where Y1, . . . , Yn are i.i.d. draws from f . In this case, we can write

ℓ̂IS =
1

N

N∑

i=1

(
10∏

j=1

f(Y
(i)
j)

g(Y
(i)
j)

)
I

(
10∑

j=1

Y
(i)
j > 5

)
.

1.6. IMPORTANCE SAMPLING 53

One advantage of this formulation is that if we can sample Y1, calculate
the likelihood ratio, then sample Y2, update the likelihood ratio (by multi-
plying by f(Y2)/g(Y2)), and so on. In particular, if we wish to simulate a
process until a stopping time, then we can simply stop when this stopping
time is reached, without having to worry about how to calculate the joint
density afterwards. When the {Yj}nj=1 are dependent, things are a little more
complicated. Continuing with our ℓ = P(X10 > 5) example, in the case of
dependent random variables, we would write

ℓ̂IS =
1

N

N∑

i=1

f(Y
(i)
1 , . . . , Y

(i)
n)

g(Y
(i)
1 , . . . , Y

(i)
n)

I

(
10∑

j=1

Y
(i)
j > 5

)
.

However, we can often write this in a more convenient form. Note that,

f(y1, . . . , yn) = f(y1)f(y2 | y1) · · · f(yn | y1, . . . , yn−1),

or, in Bayesian notation (which makes things a bit more compact),

f(y1:n) = f(y1)f(y2 | y1) · · · f(yn | y1:n−1)

Likewise, we can write

g(y1:n) = g(y1)g(y2 | y1) · · · g(yn | y1:n−1).

If we know these conditional densities, then we can write the likelihood ratio
in the form

Wn(y1:n) =
f(y1)f(y2 | y1) · · · f(yn | y1:n−1)

g(y1)g(y2 | y1) · · · g(yn | y1:n−1)
.

If we write,

W1(y1) =
f(y1)

g(y1)
,

then

W2(y1:2) =
f(y2 | y1)
g(y2 | y1)

f(y1)

g(y1)
=

f(y2 | y1)
g(y2 | y1)

W1(y1),

and, more generally,

Wn(y1:n) =
f(yn | y1:n−1)

g(yn | y1:n−1)
Wn−1(y1:n−1).

In cases where the Markov property holds,

Wn(y1:n) =
f(yn | yn−1)

g(yn | yn−1)
Wn−1(y1:n−1).

Using this formulation, we can update until a stopping time, then stop up-
dating. This formulation also allows for sophisticated methods, such as those
were certain low probability paths (i.e., paths with very small weights) are
randomly killed.

54 CHAPTER 1. RANDOM WALKS ETC.

1.6.3 Self-Avoiding Random Walks

Consider a random walk on a 2d lattice. That is, a Markov chain,
{Xn}n≥0, on Z× Z with X0 = 0 and transition probabilities given by

P (Xn = (k, l) |Xn−1 = (i, j)) =

{
1/4 , if |k − i|+ |l − j| = 1

0 , otherwise
.

Self-avoiding random walks are simply random walks that do not hit
themselves.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 1.6.1: Two realizations of a self-avoiding random walk with 7 steps.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 1.6.2: Two realizations of a self-avoiding random walk with 20 steps.

Self avoiding walks are useful as simple models of objects like polymers.
They capture some fundamental behavior of strings of molecules that cannot
be too close to one another, but otherwise have minimal interaction. They
also appear in mathematical objects like random graphs and percolation
clusters.

It is easy to generate a self-avoiding random walk of length n via Monte
Carlo if n is small. We simply simulate random walks of length n until one
of them is self-avoiding.

Listing 1.21: Matlab code

1.6. IMPORTANCE SAMPLING 55

1 n = 7; i = 1;

2

3 while(i ~= n)

4 X = 0; Y = 0;

5 lattice = zeros(2*n + 1, 2*n+1);

6 lattice(n+1, n+1) = 1;

7 path = [0 0];

8 for i = 1:n

9

10 U = rand;

11 if U < 1/2

12 X = X + 2 * (U < 1/4) - 1;

13 else

14 Y = Y + 2 * (U < 3/4) - 1;

15 end

16

17 path_addition = [X Y];

18 path = [path; path_addition];

19

20 lattice_x = n + 1 + X;

21 lattice_y = n + 1 + Y;

22

23 if lattice(lattice_x, lattice_y) == 1

24 i = 1; break;

25 else

26 lattice(lattice_x, lattice_y) = 1;

27 end

28 end

29 end

30

31 clf; hold on;

32 axis([-n n -n n]);

33 for j = 1:n

34 line([path(j,1), path(j+1,1)], [path(j,2), path(j+1,2)]);

35 end

The problem is that for large n, it is very unlikely that a random walk
will be a self-avoiding random walk. To put this in perspective, there are 4n

possible random walks of length n on the 2D square lattice. In general, the
number of self-avoiding random walks for a given n is not known. However,
for small n, these have been calculated.

• For n = 5, there are 284 self-avoiding walks. So, the probability that a

56 CHAPTER 1. RANDOM WALKS ETC.

single random walk of length 5 will be self-avoiding is

284

45
=

284

1024
≈ 0.2773.

This means we only need to generate roughly 4 walks in order to get a
self-avoiding one.

• For n = 10, there are 441000 self-avoiding random walks. So, the
probability is

44100

410
=

44100

1048576
≈ 0.0421.

This means we need to generate about 24 walks in order to get a self-
avoiding one.

• For n = 20, there are 897697164 self-avoiding random walks. The
probability is

897697164

420
≈ 8.16× 10−4.

so we need to generate about 1125 walks in order to get a self-avoiding
one.

Pretty clearly, the situation becomes unworkable by n = 100 or n = 150.
Unfortunately, people are often interested in asymptotic results when con-
sidering objects like self-avoiding random walks. In order to get information
about asymptotic behavior, we need to be able to generate statistics for ran-
dom walks with large n values. An obvious modification to the standard
algorithm would be to try to choose the next step of the random walk to
avoid the places the random walk has already been. The simplest way to
do this is to chose the next site of the random walk from the set of empty
neighbors of the current site.

PICTURE HERE

This approach is straightforward to implement in Matlab.

Listing 1.22: Matlab code

1 n = 250; i = 1;

2 moves = [0 1; 0 -1; -1 0; 1 0];

3

4 while(i ~= n)

5 X = 0; Y = 0;

6 lattice = zeros(2*(n+1) + 1, 2*(n+1)+1);

7 lattice(n+2, n+2) = 1;

1.6. IMPORTANCE SAMPLING 57

8 path = [0 0];

9 for i = 1:n

10 lattice_x = n + 2 + X; lattice_y = n + 2 + Y;

11

12 up = lattice(lattice_x,lattice_y + 1);

13 down = lattice(lattice_x,lattice_y - 1);

14 left = lattice(lattice_x-1,lattice_y);

15 right = lattice(lattice_x+1,lattice_y);

16 neighbors = [1 1 1 1] - [up down left right];

17

18 if sum(neighbors) == 0

19 i = 1; break;

20 end

21

22 direction = ...

23 min(find(rand<(cumsum(neighbors)/sum(neighbors))));

24 X = X + moves(direction,1);

25 Y = Y + moves(direction,2);

26

27 lattice_x = n + 2 + X; lattice_y = n + 2 + Y;

28 lattice(lattice_x,lattice_y) = 1;

29 path_addition = [X Y];

30 path = [path; path_addition];

31 end

32 end

33

34 clf; hold on;

35 axis([-n n -n n]);

36 for j = 1:n

37 line([path(j,1), path(j+1,1)], [path(j,2), path(j+1,2)]);

38 end

This approach does not solve all our problems (it is still possible to a
path to die out early), however it significantly increases the length of the
self-avoiding walks we are able to generate in a reasonable amount of time.
Unfortunately, this approach does not generate self-avoiding walks of length
n uniformly. Consider the two self-avoiding random walks of length 5 shown
in figures 1.6.3 and 1.6.4. The first has probability 1/4×1/3×1/3×1/3×1/3
and the second has probability 1/4 × 1/3 × 1/3 × 1/3 × 1/2. Basically, the
algorithm is biased towards more compact configurations. You can also see
this in figure 1.6.5 and figure 1.6.5, which are less spread out than most self-
avoiding walks. The obvious way to try to fix this is importance sampling.

The probability mass function for self-avoiding walks starting at x0 =

58 CHAPTER 1. RANDOM WALKS ETC.

Figure 1.6.3: A path of a self-avoiding walk of length 5.

Figure 1.6.4: A path of a self-avoiding walk of length 5.

−30 −25 −20 −15 −10 −5 0 5

−30

−25

−20

−15

−10

−5

0

5

Figure 1.6.5: A realization of a self-avoiding random walk with 250 steps
using the new technique.

1.6. IMPORTANCE SAMPLING 59

−10 −5 0 5 10 15 20 25 30

−20

−15

−10

−5

0

5

10

Figure 1.6.6: A realization of a self-avoiding random walk with 250 steps
using the new technique.

(x0, y0), which we represent by x1 = (x1, y1), . . . ,xn = (xn, yn), is given by

p(x1, . . . ,xn) =
I ((x1, . . . ,xn) ∈ En)

Zn

,

where En is the set of self-avoiding random walks of length n. Unfortunately,
as mentioned before, we do not know Zn. However, we can use weighted
importance sampling instead. To do this, we still need an expression for
q(x1, . . . ,xn), the probability mass function based on the new method. We
can get this expression using sequential importance sampling. Note that, at
step i−1 of the random walk, we know all the information up to step i−1, so
we can calculate q(xi |x0, . . . ,xi−1). Let di−1 be the number of unoccupied
neighbors of xi−1. This is a function of x0, . . . ,xi−1. Then,

q(xi |x0, . . . ,xi−1) =

{
1/di−1, if xi is an unoccupied neighbor of xi−1

0, otherwise

Thus, a successful realization of a self-avoiding random walk under our algo-
rithm, x1, . . . ,xn will have a probability of

q(x1, . . . ,xn) =
I ((x1, . . . ,xn) ∈ En)

d0 · · · dn−1

Note that p(x1, . . . ,xn) ∝ I ((x1, . . . ,xn) ∈ En), so we can use weights of the
form

W (x1, . . . ,xn) = I ((x1, . . . ,xn) ∈ En) d0 · · · dn−1,

in weighted importance sampling.

60 CHAPTER 1. RANDOM WALKS ETC.

Estimating Mean Square Extension

One of the classical objects of interest for self-avoiding random walks is
mean square extension. Given a self-avoiding random walk of length n, the
mean square extension is defined as E ‖Xn − x0‖2. Starting at x0 = (0, 0),
this is E ‖Xn‖2 = E ‖X2

n + Y 2
n ‖

2
. The standard Monte Carlo estimator of

this would be

ℓ̂ =
1

N

N∑

i=1

∥∥X(i)
n

∥∥2 ,

where X
(1)
n , . . . ,X

(N)
n are i.i.d. draws from p(x1, . . . ,xn). The weighted im-

portance sampling estimator, using the alternative approach, is

ℓ̂IS =

1
N

∑N
i=1 d

(i)
0 · · · d(i)n−1

∥∥∥X(i)
n

∥∥∥
2

1
N

∑N
i=1 d

(i)
0 · · · d(i)n−1

,

where X
(1)
n , . . . ,X

(N)
n are i.i.d. draws from q(x1, . . . ,xn), and the values

d
(i)
1 , . . . , d

(i)
n etc. are functions of the appropriate self-avoiding random walk.

An implementation of the standard Monte Carlo approach is

Listing 1.23: Matlab code

1 N = 10^5; n = 5;

2 square_extension = zeros(N,1);

3

4 for step_i = 1:N

5 i = 1;

6 while(i ~= n)

7 X = 0; Y = 0;

8 lattice = zeros(2*n + 1, 2*n+1);

9 lattice(n+1, n+1) = 1;

10 for i = 1:n

11 U = rand;

12 if U < 1/2

13 X = X + 2 * (U < 1/4) - 1;

14 else

15 Y = Y + 2 * (U < 3/4) - 1;

16 end

17

18 lattice_x = n + 1 + X;

19 lattice_y = n + 1 + Y;

20

21 if lattice(lattice_x, lattice_y) == 1

1.6. IMPORTANCE SAMPLING 61

22 i = 1;

23 break;

24 else

25 lattice(lattice_x, lattice_y) = 1;

26 end

27 end

28 end

29

30 square_extension(step_i) = X^2 + Y^2;

31 end

32

33 mean_square_extension = mean(square_extension)

An implementation of the importance sampling version is

Listing 1.24: Matlab code

1 N = 10^5; n = 150; square_extension = zeros(N,1);

2 moves = [0 1; 0 -1; -1 0; 1 0];

3

4 for step_i = 1:N

5 i = 1;

6 while(i ~= n)

7 X = 0; Y = 0; weight = 1;

8 lattice = zeros(2*(n+1) + 1, 2*(n+1)+1);

9 lattice(n+2, n+2) = 1;

10 for i = 1:n

11 lattice_x = n + 2 + X; lattice_y = n + 2 + Y;

12 up = lattice(lattice_x,lattice_y + 1);

13 down = lattice(lattice_x,lattice_y - 1);

14 left = lattice(lattice_x-1,lattice_y);

15 right = lattice(lattice_x+1,lattice_y);

16 neighbors = [1 1 1 1] - [up down left right];

17

18 if sum(neighbors) == 0

19 i = 1; break;

20 end

21 weight = weight * sum(neighbors);

22 direction = ...

23 min(find(rand<(cumsum(neighbors)/sum(neighbors))));

24 X = X + moves(direction,1);

25 Y = Y + moves(direction,2);

26 lattice_x = n + 2 + X; lattice_y = n + 2 + Y;

27 lattice(lattice_x,lattice_y) = 1;

28 end

62 CHAPTER 1. RANDOM WALKS ETC.

29 end

30 weights(step_i) = weight;

31 square_extension(step_i) = X^2 + Y^2;

32 end

33 mean_square_extension = ...

34 mean(weights’.*square_extension) / mean(weights)

Chapter 2

Poisson Processes and
Continuous Time Markov
Chains

2.1 Stochastic Processes in Continuous Time

In order to discuss stochastic processes in continuous time, we need to
update a few of the definitions we have been working with.

Technically, a stochastic process lives on a probability space (Ω,F ,P).
Typical choices of Ω are C[0,∞), the space of all continuous functions on
[0,∞), and D[0,∞), the space of right continuous left limit (càdlàg) func-
tions. An element, ω, of Ω is then a function. We can then define a stochastic
process by Xt(ω) = ω(t). We often take F to be the smallest σ-algebra such
that ω → ω(t) is measurable for each t ≥ 0. We usually work with a set
of probability measures {Px}x∈X , where Px is the probability measure of a
stochastic process starting at X0 = x (i.e., Px(X0 = x) = 1). I will use P

without a subscript to denote a stochastic process started at 0 (or sometimes
something else if the context is explicit enough).

A continuous time, general state space stochastic process takes values in
a state space X that is equipped with an appropriate σ-algebra, Σ. Often,
X will be R and Σ will then be B(R), the Borel σ-algebra on R.

The first thing we need is a way of rigorously talking about the history
of a process. In the discrete time case, we could simply consider X0, . . . , Xn.
Now, we need something a bit more sophisticated, called a filtration.

Definition 2.1.1 (Filtration). A filtration {Ft}t≥0 is an increasing family of
sub σ-algebras of F (that is, Fs ⊆ Ft ⊆ F for all s ≤ t).

63

64 CHAPTER 2. POISSON PROCESSES AND CTMCS

We will require/assume that a filtration is right continuous. That is,

Ft =
⋂

s≥t

Fs ∀t ≥ 0.

We need the filtration to contain some information about {Xt}t≥0 (other-
wise, it is not very useful). We say {Xt}t≥0 is adapted to a filtration, {Ft}t≥0

if the filtration contains sufficient information about {Xt}t≥0. More formally,

Definition 2.1.2. A process, {Xt}t≥0 is adapted to a filtration {Ft}t≥0, or
Ft-adapted, if Xt is Ft measurable for all t ≥ 0.

We normally assume we are working the natural filtration of a process
(augmented so that it is right-continuous).

Definition 2.1.3 (Natural Filtration). The natural filtration of a process,
{FX

t }t≥0 is the filtration generated by the process itself. That is

FX
t = σ(Xs : 0 ≤ s ≤ t).

If we augment the natural filtration by adding certain sets of measure zero,
we will usually (in situations we consider) get a right-continuous filtration.
When this is possible, we assume that by natural filtration we mean the
augmented natural filtration.

Equipped with the concept of a filtration, we can define stopping times
in continuous time.

Definition 2.1.4 (Stopping Time : Continuous Time Version). A random
variable τ : Ω → [0,∞] is said to be a stopping time with respect to the
filtration {Ft}t≥0 if {τ ≤ t} ∈ Ft for all t ≥ 0.

We can also define a continuous time general state space version of the
Markov property.

Definition 2.1.5 (Markov Property: Continuous Time). We say an Ft-
adapted stochastic process {Xt}t≥0 taking values in X has the Markov prop-
erty if

Px(Xt+s ∈ A | Fs) = Px(Xt+s ∈ A |Xs) Px almost surely,

for all x ∈ X , 0 ≤ s ≤ t and A ∈ Σ.

Likewise, we can define a continuous time version of the strong Markov
property.

2.2. THE POISSON PROCESS 65

Definition 2.1.6 (Strong Markov Property: Continuous Time). We say an
Ft-adapted stochastic process {Xt}t≥0 taking values in X has the strong
Markov property if, given a stopping time τ and conditional on τ < ∞,

Px(Xt+τ ∈ A | Fτ) = Px(Xt+τ ∈ A |Xτ) Px almost surely,

for all x ∈ X , 0 ≤ s ≤ t and A ∈ Σ.

2.2 The Poisson Process

The Poisson process is one of the fundamental stochastic processes in
probability. We can use it to build many complex and interesting stochastic
objects. It is a very simple model for processes such as the arrival of people in
a queue, the number of cars arriving at a red traffic light, and the occurrence
of insurance claims.

2.2.1 Point Processes on [0,∞)

A Poisson process is a point process on [0,∞). We will not consider
such point processes in their most general form, but rather a straightforward
and easy to work with subset of point processes. We can use a number of
equivalent definitions. The first of these is to see the point process in terms
of a counting process. A counting process, {Nt}t≥0 counts the number of
events that have happened by time t.

Definition 2.2.1 (Point Process on [0,∞): Counting Process Version). A
point process on [0,∞) is a process {Nt}t∈[0,∞) taking values in N that:

(i) Vanishes at 0. That is, N0− = N0 = 0, where Nt− = limu↑t Nu.

(ii) Is non-decreasing. That is, N0 ≤ Ns ≤ Nt for 0 ≤ s ≤ t.

(iii) Is right continuous. That is, Nt = Nt+ , where Nt+ = limu↓t Nu.

(iv) Has unit jumps. That is, Nt −Nt− ∈ 0, 1. Technically, a process where
only one jump can occur at a given time t is called a simple point

process.

(v) Has an infinite limit. That is, limt→∞ Nt = ∞.

Note, again, that some of these requirements can be relaxed.

66 CHAPTER 2. POISSON PROCESSES AND CTMCS

Definition 2.2.2 (Point Process on [0,∞): Jump Instances Version). A
point process on [0,∞) is defined by a sequence {Tn}n≥1 of random variables
that are positive and increasing to infinity. That is,

0 < T1 < T2 < · · · < ∞ and lim
n→∞

Tn = ∞.

This defines the counting process

Nt =
∑

n≥1

I(Tn ≤ t) = sup{n ≥ 1 : Tn ≤ t}.

Definition 2.2.3 (Point Process on [0,∞): Inter-arrivals Version). A point
process on [0,∞) is defined by a sequence {Sn}n≥1 of positive random vari-
ables such that

∑
n≥1 Sn = ∞. These define a sequence of jump instances by

S1 = T1 and Sn = Tn − Tn−1 for n ≥ 2.

PICTURE HERE

These three definitions of point processes suggest three possible ways to
simulate them.

(i) We can simulate the counting process {Nt}t≥0 (or its increments).

(ii) We can simulate the jump times {Tn}n≥1.

(iii) We can simulate the inter-arrival times {Sn}n≥1.

The key properties of a Poisson process (aside from being a point process)
are that it has stationary increments and independent increments.

Definition 2.2.4 (Stationary Increments). A stochastic process {Xt}t≥0 has
stationary increments if the distribution of Xt+h −Xt depends only on h for
h ≥ 0.

Definition 2.2.5 (Independent Increments). A stochastic process {Xt}t≥0

has independent increments if the random variables {Xti+1
− Xti}ni=1 are

independent whenever 0 ≤ t1 < t2 < · · · < tn and n ≥ 1.

A process that has stationary and independent increments is attractive
from a simulation perspective because we can simulate it in ’parts’ (the in-
crements).

2.2. THE POISSON PROCESS 67

2.2.2 Poisson Process

Equipped with the necessary definitions, we can now define a Poisson
process.

Definition 2.2.6 (Poisson Process on [0,∞)). A (homogenous) Poisson pro-
cess on [0,∞) with parameter λ > 0 is a point process on [0,∞) with sta-
tionary and independent increments and Nt ∼ Poi(λt) for all t ≥ 0. That
is,

P(Nt = k) = e−λt (λt)
k

k!
.

Actually, we can define a Poisson process in a number of different ways.

Theorem 2.2.7 (Poisson process). The following definitions are equivalent
definitions.

(i) A Poisson process is a point process, {Nt}t≥0, with stationary and
independent increments with Nt ∼ Poi(λt) for all t ≥ 0.

(ii) A Poisson process is a point process, {Nt}t≥0, with independent incre-
ments and the property that, as h ↓ 0, uniformly in t

(a) P(Nt+h −Nt = 0) = 1− λh+ o(h).

(b) P(Nt+h −Nt = 1) = λh+ o(h).

(c) P(Nt+h −Nt > 1) = o(h).

(iii) A Poisson process is a point process defined by its inter-arrival times,
{Sn}n≥1, which are i.i.d. Exp(λ).

Before we prove anything, we need a few results.

Lemma 2.2.8 (Memoryless Property). We say that exponential random
variables have the memoryless property. That is, for t, s ≥ 0, if X ∼ Exp(λ),
then

P(X > t+ s |X > s) = P(X > t).

Proof. We can write P(X > t+ s |X > s) as

P(X > t+ s,X > s)

P(X > s)
.

As s < t then P(X > t+ s,X > s) = P(X > t), so

P(X > t+ s,X > s)

P(X > s)
=

P(X > t+ s)

P(X > s)
=

e−λ(t+s)

e−λs
= e−λ(t) = P(X > t).

68 CHAPTER 2. POISSON PROCESSES AND CTMCS

Theorem 2.2.9 (Markov Property). If {Nt}t≥0 is a Poisson process with
rate λ > 0, then, for any s > 0, {Nt+s−Ns}t≥0 is also a Poisson process with
rate λ. Furthermore, this process is independent of {Nr}r≤s.

Proof. First, note that the event {Ns = i} can be written as

{Ns = i} = {Ti ≤ s} ∩ {Si+1 > s− Ti}

and, given this, for r ≤ s,

Nr =
i∑

j=1

I(Sj ≤ r).

Define the process starting at time s by Ñt = Nt+s − Ns. Then, given
{Ns = i}, S̃1 = Si+1 − (s − Ti) and S̃n = Si+n for n ≥ 2. Now, by the

memoryless property, S̃1 is an Exp(λ) random variable. Thus the {S̃n}n≥1 are
i.i.d. Exp(λ) random variables independent of S1, . . . , Sn. Thus, conditional

of {Ns = i}, {Ñt}t≥0 is a Poisson process independent of {Xr}r≤s.

Now, we can prove Theorem 2.2.7.

Proof. I give a number of proofs of equivalences here. The rest will be left
for exercises or self-study.

Part 1. First, we will show that (i) implies (ii). Now, as the increments are
stationary, we know Nt+h −Nt has the same distribution as Nh −N0. So,

P(Nt+h −Nt = 0) = P(Nh −N0 = 0) = P(Nh = 0) = e−λh.

Taking a Taylor expansion of the exponential function, we get e−λh = 1 −
λh+ o(h). Likewise,

P(Nt+h −Nt = 1) = P(Nh = 1) = λhe−λh = λh+ o(h).

and P(Nt+h −Nt > 1) = o(h).

Part 2. We will show that (ii) implies (i). We do this by solving some
differential equations. First, let us define pj(t) = P(Nt = j). Then,

p0(t+h) = P(Nt+h = 0) = P(Nt+h−Nt = 0)P(Nt = 0) = (1−λh+o(h))p0(t).

Rearranging, we have

p0(t+ h)− p0(t)

h
= −λp0(t) +

o(h)

h
.

2.2. THE POISSON PROCESS 69

Because this holds for all t, we also get

p0(t)− p0(t− h)

h
= −λp0(t− h) +

o(h)

h
.

Letting h → 0 shows that p0(t) has a derivative (as the limit exists). This
gives us

p0(t)
′ = −λp0(t) ⇒ p0(t) = Ae−λt.

Now, because N0 = 0, we know that p0(0) = 1 so A = 1 (i.e., p0(t) = e−λt).
Doing the same for pj(t) we have

pj(t+ h) =

j∑

i=0

P(Nt+h −Nt = i)P(Nt = j − i)

= P(Nt+h −Nt = 0)P(Nt = j) + P(Nt+h −Nt = 1)P(Nt = j − 1)

+

j∑

i=2

P(Nt+h −Nt = i)P(Nt = j − i)

= (1− λh+ o(h))pj(t) + (λh+ o(h))pj−1(t) + o(h).

Rearranging, we have

pj(t+ h)− pj(t)

h
= −λpj(t) + λpj−1(t) +

o(h)

h
.

By a similar argument to the one above, we get

pj(t)
′ = −λpj(t) + λpj−1(t).

Now, remember that the product rule tells us that (fg)′ = f ′g + g′f . If we
use the integrating factor eλt, we get

pj(t)
′ = −λpj(t) + λpj−1(t) ⇒ eλtpj(t) = −λeλtpj(t) + λeλtpj−1(t)

⇒ eλtpj(t)
′ + λeλtpj(t) = λeλtpj−1(t) ⇒

(
eλtpj(t)

)′
= λeλtpj−1(t).

We can solve this by induction. We start with j = 1. This gives
(
eλtp1(t)

)′
= λeλtp0(t) = λeλte−λt = λ.

Integrating, we get

eλtp1(t) = λt+ A ⇒ p1(t) = tλeλt + Aeλt.

Now, pj(0) = 0 for j > 0, so A = 0 and p1(t) = tλeλt. Repeating in this way,
we get

pj(t) = P(Nt = j) = e−λt (λt)
j

j!
.

70 CHAPTER 2. POISSON PROCESSES AND CTMCS

Part 3. We show that (iii) implies (ii). This is just like the proof that (i)
implies (ii). Using the Markov property (which was based on the interarrivals
definition) we observe that Nt+h −Nt has the same distribution as Nh, so

P(Nt+h −Nt = 0) = P(Nh = 0) = P(S1 > h) = e−λh = 1− λh+ o(h),

and

P(Nt+h −Nt = 1) = P(Nh = 0) = P(S1 < h, S1 + S2 > h)

=

∫ h

0

e−λ(h−u)λe−λu du =

∫ h

0

λe−λh du = λhe−λh = λh+ o(h).

It is also straightforward to see that

P(Nt+h −Nt > 1) = P(S1 < h, S1 + S2 < h) ≤ P(S1 < h)P(S2 < h) = o(h).

2.2.3 Order Statistics and the Distribution of Arrival
Times

Order Statistics

Consider identically distributed random variables X1, . . . , Xn with distri-
bution F (x) (that is P(X < x) = F (x). The order statistics of these random
variables are simply the random variables ordered from smallest to largest.
We write these as X(1) ≤ X(2) ≤ . . . ≤ X(n). Two of the most important
order statistics are the minimum, X(1), and the maximum, X(n).

Lemma 2.2.10. The distribution of the minimum is given by

P
(
X(1) ≤ x

)
= 1− (1− F (x))n .

Proof. We have

P
(
X(1) ≤ x

)
= 1− P

(
X(1) > x

)
= 1− P(X1 > x, . . . , Xn > x)

= 1− P(X1 > x) · · ·P(Xn > x) = 1− (P(X > x))n = 1− (1− F (x))n .

Lemma 2.2.11. The distribution of the maximum is given by

P
(
X(n) ≤ x

)
= F (x)n

2.2. THE POISSON PROCESS 71

Proof. We have

P
(
X(n) ≤ x

)
= P(X1 ≤ x, . . . , Xn ≤ x) = P(X ≤ x)n = F (x)n.

Lemma 2.2.12. The density of the order statistics of n random variables
U1, . . . , Un, with distribution U(a, b), is given by

f(u1, . . . , un) =
n!

(b− a)n
I(a ≤ u1 ≤ · · · ≤ un ≤ b)

Proof. It is easiest to begin with the distribution and then take derivatives
to get the density. We wish to calculate P

(
U(1) ≤ u1, . . . , U(n) ≤ un

)
. Note

that there are n! orderings of the uniform random variables, each of which is
equally likely. So,

P
(
U(1) ≤ u1, . . . , U(n) ≤ un

)
= n!P(U < u1) · · ·P(U < un)

= n!
u1 − a

b− a
· · · un − a

b− a
.

Taking derivatives, we get

f(u1, . . . , un) =
∂

∂u1

· · · ∂

∂un

P
(
U(1) ≤ u1, . . . , U(n) ≤ un

)

=
n!

(b− a)n
I(a ≤ u1 ≤ · · · ≤ un ≤ b).

Distribution of Arrival Times

As it turns out, given that we know how many arrivals a Poisson process
has had in an interval [0, t] (that is, we know Nt), the arrival times will
be uniformly distributed in the interval. This implies that the points of a
Poisson process have very little structure to them (in some sense, it is a
process that puts points as arbitrarily as possible on a line).

Theorem 2.2.13. Let {Nt}t≥0 be a Poisson process. Then, conditional on
{Nt = n}, T1, . . . , Tn have the joint density function

f(t1, . . . , tn) =
n!

tn
I(0 ≤ t1 ≤ · · · ≤ tn ≤ t).

This is the density of the order statistics of i.i.d. uniform random variables
on the interval [0, t]. This means the arrival times are distributed uniformly
on this interval.

72 CHAPTER 2. POISSON PROCESSES AND CTMCS

Proof. Consider the event {T1 = t1, . . . , Tn = tn, Nt = n}. Because there is a
bijection between arrival times and inter-arrival times, this should have the
same probability density as the event

{S1 = t1, S2 = t2 − t1, . . . , Sn = tn − tn−1, Sn+1 > t− tn}.

Because this is the joint density of i.i.d. exponential random variables, we
can write this explicitly as

λe−λu1λe−λ(u2−u1) · · ·λe−λ(un−un−1)e−λ(t−un) = λne−λt.

We then get the conditional density we wish by dividing by the probability
of the event {Nt = n},

f(t1, . . . , tn) =
λne−λt

(λt)ne−λt/n!
I(0 ≤ t1 ≤ · · · ≤ tn ≤ t)

=
n!

tn
I(0 ≤ t1 ≤ · · · ≤ tn ≤ t).

2.2.4 Simulating Poisson Processes

As already mentioned, there are at least three ways of simulating a Pois-
son process. These follow directly from the different definitions we have used.

Using the Infinitesimal Definition to Simulate Approximately

The infinitesimal definition gives us a way to simulate the counting pro-
cess {Nt}t≥0 directly. This simulation is approximate but becomes increas-
ingly good as h ↓ 0. The idea is to slice the interval [0, t] up into little pieces
of length (sometimes called mesh size) h. In each one of these slices, we
increase {Nt}t≥0 with probability λh.

Listing 2.1: Matlab code

1 lambda = 4; t = 1; h = 0.0001;

2 mesh = 0:h:t; N = zeros(1, length(mesh));

3 S = []; jump_indices = [];

4

5 N(1) = 0;

6

7 for i = 2:length(mesh)

8 if rand < lambda * h

2.2. THE POISSON PROCESS 73

9 jump_indices = [jump_indices i];

10 N(i) = N(i-1) + 1;

11 else

12 N(i) = N(i-1);

13 end

14 end

15

16 if isempty(jump_indices)==0

17 Ts = (jump_indices - 1)*h;

18 S(1) = Ts(1);

19 if length(jump_indices) > 1

20 for i = 2:length(jump_indices)

21 S(i) = Ts(i) - Ts(i-1);

22 end

23 end

24 end

Simulating the Arrival Times

The idea of this approach is to simulate the arrival times directly. Given
an interval [0, t], we know that we have a Poi(λt) random number of arrivals.
These are then distributed uniformly in [0, t].

Listing 2.2: Matlab code

1 t = 5; lambda = 2;

2

3 T = [];

4 n = poissrnd(lambda * t);

5

6 if n~=0

7 T = sort(t * rand(n,1));

8 S = zeros(n,1);

9 S(1) = T(1);

10 if n > 1

11 for i = 2:n

12 S(i) = T(i) - T(i-1);

13 end

14 end

15 end

74 CHAPTER 2. POISSON PROCESSES AND CTMCS

Simulating the Inter-Arrival Times

The idea here is to simulate the inter-arrival times, which are i.i.d. Exp(λ)
random variables. Note that, if U ∼ U(0, 1), then − log(U)/λ is Exp(λ).

Listing 2.3: Matlab code

1 lambda = 4; h = 0.0001; t = 1;

2

3 s = 0;

4

5 S = []; Ts = [];

6

7 while s <= t

8 inter_time = - log(rand) / lambda;;

9 s = s + inter_time;

10 if s > t

11 break;

12 else

13 Ts = [Ts s];

14 S = [S inter_time];

15 end

16 end

2.2.5 Inhomogenous Poisson Processes

For many of the processes that Poisson processes are used to model, such
as queues and traffic, the assumption that events occur at a constant rate
(i.e., λ is constant) is very unrealistic. If you think about traffic (either on the
internet or on a road) it tends to be heavier in some time periods and lighter in
others. Inhomogenous Poisson processes modify the definition of a Poisson
process so that it can incorporate time-dependent arrivals. Inhomogenous
Poisson processes can be defined in a number of ways. Note, however, that it
is no longer straightforward to use a definition based on inter-arrival times.

Definition 2.2.14 (Inhomogenous Poisson Process). A point process {Nt}t≥0

is said to be an inhomogenous Poisson process with intensity function λ(t) ≥
0 ∀t ≥ 0.

(i) N0 = 0.

(ii) For each t ≥ 0, Nt has a Poisson distribution with paramater Λ =∫ t

0
λ(s) ds.

2.2. THE POISSON PROCESS 75

(iii) For each 0 ≤ t1 < t2 < · · · < tm, the random variables Nt1 , . . . , Ntm −
Ntm−1 are independent (that is, {Nt}t≥0 has independent increments).

Definition 2.2.15 (Inhomogenous Poisson Process (Infinitesimal Defini-
tion)). A point process {Nt}t≥0 is said to be an inhomogenous Poisson process
with intensity function λ(t) ≥ 0∀t ≥ 0 if, as h ↓ 0,

(i) {Nt}t≥0 has independent increments.

(ii) P(Nt+h −Nt = 0) = 1− λ(t)h+ o(h).

(iii) P(Nt+h −Nt = 1) = λ(t)h+ o(h).

(iv) P(Nt+h −Nt > 1) = o(h).

2.2.6 Simulating an Inhomogenous Poisson Process

There are at least two ways to simulate an inhomogenous Poisson process.

Acceptance-Rejection

One way to simulate an inhomogenous Poisson process on an interval [0, t]
is to simulate a homogenous Poisson process with parameter

λ∗ = max{λ(s) : 0 ≤ s ≤ t}

then ‘thin’ this process by only accepting arrivals with a certain probability.
If an arrival / jump occurs at time Ti it should only be accepted with prob-
ability λ(T1)/λ

∗. It is not hard to check that this method works using the
infinitesimal definition.

Listing 2.4: Matlab code

1 t = 10; lambda_star = 1;

2

3 T = [];

4 n = poissrnd(lambda_star * t);

5

6 if n~=0

7 point_count = 0;

8 for i = 1:n

9 T_temp = t * rand;

10 if rand < sin(T_temp)^2 / lambda_star

11 point_count = point_count + 1;

12 T(point_count) = T_temp;

76 CHAPTER 2. POISSON PROCESSES AND CTMCS

13 end

14 end

15 if point_count ~= 0

16 T = sort(T);

17 S = zeros(point_count,1);

18 S(1) = T(1);

19 if point_count > 1

20 for i = 2:point_count

21 S(i) = T(i) - T(i-1);

22 end

23 end

24 end

25 end

Infinitesimal Approach (Approximate)

As in the homogenous Poisson process case, we can simulate an inho-
mogenous Poisson process approximately using its infinitesimal definition.
This approximation becomes better as h ↓ 0.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Figure 2.2.1: A realization of a inhomogenous Poisson process with the in-
tensity function λ(t) = 3 sin2(t) plotted.

Listing 2.5: Matlab code

1 lambda = 1; t = 10; h = 0.0001;

2 mesh = 0:h:t; N = zeros(1, length(mesh));

3 S = []; jump_indices = [];

2.2. THE POISSON PROCESS 77

4

5 N(1) = 0;

6

7 for i = 2:length(mesh)

8 if rand < 3*sin(h*(i-1))^2 * h

9 jump_indices = [jump_indices i];

10 N(i) = N(i-1) + 1;

11 else

12 N(i) = N(i-1);

13 end

14 end

15

16 if isempty(jump_indices)==0

17 Ts = (jump_indices - 1)*h;

18 S(1) = Ts(1);

19 if length(jump_indices) > 1

20 for i = 2:length(jump_indices)

21 S(i) = Ts(i) - Ts(i-1);

22 end

23 end

24 end

2.2.7 Compound Poisson Processes

A very useful extension of a Poisson process is what is called a compound

Poisson process. A compound Poisson process replaces the unit jumps of a
homogenous Poisson process with random jump sizes.

Definition 2.2.16 (Compound Poisson Process). Given a homogenous Pois-
son process, {Nt}t≥0 and a jump distribution G, we say

Xt =
Nt∑

i=1

Ji,

is a compound Poisson process, where the jumps {Jn}n≥0 are i.i.d. draws
from the distribution G.

Example 2.2.17. A street musician plays the accordion in the main street
of Ulm for three hours. He hopes to earn enough for a beer, which costs
AC3.50. Throughout the three hours, people give him coins at random. There
does not seem to be any pattern to when people give him money, so a Poisson

78 CHAPTER 2. POISSON PROCESSES AND CTMCS

process is a good model. The amount of money each person gives is random,
with distribution

P(AC0.05) = 2/5

P(AC0.10) = 2/5

P(AC0.20) = 1/5.

On average, 5 people per hour give the street musician money. This implies
that the Poisson process has intensity λ = 5. What is the probability the
musician gets his beer? That is, what is ℓ = P(X3 ≥ 3.50). We can estimate
this easily using Monte Carlo.

Listing 2.6: Matlab code

1 t = 3; lambda = 5; N = 10^6;

2 beer = zeros(N,1); beer_price = 350;

3

4 for i = 1:N

5

6 n = poissrnd(lambda * t);

7

8 if n~=0

9 coins = zeros(n,1);

10 for j = 1:n

11 U = rand;

12 coins(j) = (U <= 2/5)*5 + ...

13 (U > 2/5 && U <= 4/5)*10 + (U > 4/5)*20;

14 end

15 end

16

17 beer(i) = (sum(coins) >= beer_price);

18 end

19

20 ell_hat = mean(beer)

21 re_hat = std(beer) / (ell_hat * sqrt(N))

2.3 Continuous Time Markov Chains

Continuous time Markov chains (CTMCS) — or, at least, the ones we
consider — behave much like discrete time Markov chains, with the key
difference that the the jumps between states take place at random times
rather than at fixed steps. Continuous time Markov chains are trickier to

2.3. CONTINUOUS TIME MARKOV CHAINS 79

work with than discrete time Markov chains, because there are a number
of technical issues and strange / pathological things that can happen. This
behavior is mainly related to situations where an infinite number of jumps
can happen in a finite time. In this course, we will not consider chains where
such things happen. This is because these chains can not really be simulated
and considering a smaller subset of continuous time Markov chains will be
sufficient for modeling most real world phenomena we might be interested
in.

The chains we consider can be described in two different but equivalent
ways: transition functions and infinitesimal genertors. Warning: these de-
scriptions are not always equivalent or even valid when working with more
general classes of CTMCs.

2.3.1 Transition Function

Transition functions are the continuous time equivalent of the transition
matrix, P , that we have already encountered when discussing discrete time
Markov chains. That is, they are functions that allow us to calculate proba-
bilities of the form Pi(Xt = j). More formally, a transition function is defined
as follows.

Definition 2.3.1 (Transition function). A transition function pt(i, j) with
i, j ∈ X and t ≥ 0 is a real-valued function satisfying the following properties

(i) pt(i, j) ≥ 0 for all i, j ∈ X and t ≥ 0.

(ii)
∑

j∈X pt(i, j) = 1 for all i ∈ X and t ≥ 0.

(iii) limt↓0 pt(i, i) = p0(i, i) = 1 for all i ∈ X .

(iv) The Chapman-Kolmogorov equations:

ps+t(i, j) =
∑

k∈X

ps(i, k)pt(k, j)

for all i, j ∈ X and t ≥ 0.

We can think of transitions functions as a family of matrices, {P (t)}t≥0,
indexed by t. For a fixed value of t, (P (t))i,j = pt(i, j). We can write the
properties out again in terms of matrices:

Definition 2.3.2 (Transition function: Matrix Version). A transition func-
tion is a family of matrices, {P (t)}t≥0 with the following properties.

80 CHAPTER 2. POISSON PROCESSES AND CTMCS

(i) They are non-negative, real-valued and
∑

j∈X Pi,j = 1 for all i ∈ X and
t ≥ 0. Matrices that are non-negative with unit row sums are called
stochastic matrices.

(ii) They satisfy the Chapman-Kolmogorov equations: P (s+t) = P (s)P (t).

2.3.2 Infinitesimal Generator

Definition 2.3.3. The infinitesimal generator (or Q-matrix) is a real valued
matrix satisfying the following properties

(i) qi,j ≥ 0 for all i 6= j.

(ii)
∑

j∈X qi,j = 0.

Thus, we require that qi,i = −∑j 6=i qi,j. Because it plays an important
role in our treatment of CTMCs, we denote qi = −qi,i.

INF DEF. COMPETING POISSON PROCESS VERSION.
EXAMPLE.

2.3.3 Continuous Time Markov Chains

FORMALLY. OUR VERSION.

2.3.4 The Jump Chain and Holding Times

If we only consider the sequence of states that a CTMC visits (by looking
at the value the CTMC takes immediately after each jump), we get a discrete
time Markov chain {Yn}n≥0 called the jump chain of the CTMC. We call the
time spent in each state a holding time. Associate with a path of the jump
chain Y0, . . . , Yn is a sequence of holding times S1, . . . , Sn+1, where S1 is the
time spent in Y0 before jumping to Y1, S2 is the time spent in Y1 before
jumping to Y2, and so on. The definitions of the jump chain and holding
times are made clear in figure (REF).

PICTURE HERE

The jump chain {Yn}n≥0 is a discrete time Markov chain, so it can be de-
scribed by a transition matrix J (we do not use P in order to avoid confusion
with the transition function P). As it turns out, J can be written in terms
of the Q-matrix.

2.3. CONTINUOUS TIME MARKOV CHAINS 81

Lemma 2.3.4. Given a CTMC with infinitesimal generator Q, the jump
matrix J is defined by

Ji,i = 0

for all i ∈ X and
Ji,j =

qi,j
qi

for all i, j ∈ X such that j 6= i.

The holding times are also defined by the Q-matrix.

Lemma 2.3.5. Given Y0, Y1, . . . , Yn, the holding times S1, . . . , Sn+1 are ex-
ponential random variables with parameters qY0 , qY1 , . . . , qYn

.

Example 2.3.6. Consider the following CTMC.

PICTURE HERE

The Q matrix of this chain is given by

Q =

−λ λ 0
µ −(λ+ µ) µ
0 µ −µ

 .

Thus, the transition matrix of the jump chain is

J =

0 1 0
µ

λ+µ
0 λ

λ+µ

0 1 0

 ,

and the amount of time spent in state 1 is Exp(λ), the amount of time spent
in state 2 is Exp(λ+ µ) and the amount of time spent in state 3 is Exp(µ).

2.3.5 Examples of Continuous Time Markov Chains

Poisson Process

We are already quite familiar with one CTMC: the Poisson process. This
process has exponential holding times (always with parameter λ) and a jump
chain that always increases by one. That is, the jump chain is of the form

J =

0 1 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 1 0 · · ·
...

.

 .

82 CHAPTER 2. POISSON PROCESSES AND CTMCS

This gives a Q-matrix of the form

Q =

−λ λ 0 0 0 · · ·
0 −λ λ 0 0 · · ·
0 0 −λ λ 0 · · ·
...

.

 .

Birth-Death Process

A Poisson process is sometimes called a pure birth process, as it models a
population that is constantly growing. More generally, birth-death processes
are simple models of populations where births and deaths happen at random.
A simple example is the following

PICTURE HERE

The Q-matrix for this chain is of the form

Q =

−λ λ 0 0 0 · · ·
µ −(µ+ λ) λ 0 0 · · ·
0 µ −(µ+ λ) λ 0 · · ·
...

.

 .

2.3.6 Simulating Continuous Time Markov Chains

If we think about CTMCs in terms of jump chains and holding times,
then the generic method for simulating them becomes obvious. We simply
wait an exponential rate of time in each state, determined by the Q-matrix,
the jump to the next state according to the J matrix. The jump chain itself
is simulated just as in the section on discrete time Markov chains. As with
discrete time Markov chains, it is important to consider whether your chain
is finite or infinite, as this usually changes the choice of how to encode J .
If the chain is infinite, then it obviously is not possible to write out the J
matrix.

Example 2.3.7 (A finite state space CTMC). Consider the following CTMC

PICTURE HERE,

with initial distribution λ = (1/2, 1/2, 0, 0). This chain has Q-matrix

Q =

−9 2 3 4
1 −4 3 0
1 2 −7 4
1 0 3 −4

 .

2.3. CONTINUOUS TIME MARKOV CHAINS 83

and jump matrix

J =

0 2/9 3/9 4/9
1/4 0 3/4 0
1/7 2/7 0 4/7
1/4 0 3/4 0

 .

The Matlab code for simulating this is as follows.

Listing 2.7: Matlab code

1 T = 10; t = 0;

2

3 Q = [-9 2 3 4; 1 -4 3 0; 1 2 -7 4; 1 0 3 -4];

4 J = [0 2/9 3/9 4/9; 1/4 0 3/4 0; 1/7 2/7 0 4/7; 1/4 0 3/4 0];

5

6 U = rand; X = (U <= 1/2) + 2*(U > 1/2);

7 jump_times = [0]; jump_chain = [X];

8

9 while t <= T

10 t = t + log(rand) / Q(X,X);

11 if t > T

12 break;

13 else

14 jump_times = [jump_times t];

15 X = min(find(rand<cumsum(J(X,:))));

16 jump_chain = [jump_chain X];

17 end

18 end

Example 2.3.8 (A birth-death process). Consider the birth-death process
pictured in figure (REF) such that P(X0 = 0) = 1.

PICTURE HERE

We can implement this in Matlab by encoding the transition rule itself.

Listing 2.8: Matlab code

1 T = 100000; t = 0;

2 lambda = 2; mu = 0.25;

3

4 X = 0; jump_times = [0]; jump_chain = [X];

5

6 while t <= T

7 t = t - log(rand) / (lambda + X*mu);

8 if t > T

84 CHAPTER 2. POISSON PROCESSES AND CTMCS

9 break;

10 else

11 jump_times = [jump_times t];

12

13 if rand < lambda / (lambda + X*mu)

14 X = X + 1;

15 else

16 X = X - 1;

17 end

18 jump_chain = [jump_chain X];

19 end

20 end

2.3.7 The Relationship Between P and Q in the Finite
Case

In the finite case, we can write P directly in terms of Q. Remember that
P must satisfy P (s + t) = P (t)P (s). This implies that P should be some
kind of exponential like function. In fact, we can write

P (t) = etQ

where etQ is the matrix exponential. It might at first be unclear how to define
a matrix exponential. However, if we remember the Taylor series definition
of the exponential, then we realise we can write something equivalent using
matrices. That is

P (t) =
∞∑

k=0

(tQ)k

k!
.

Warning! It is often very computationally challenging to compute a matrix
exponential. The answer the computer gives you might not always be correct.
In Matlab you need to use ‘expm’ rather than ‘exp’ if you wish to use the
matrix exponential.

Example 2.3.9. Consider the CTMC given earlier with Q-matrix

Q =

−9 2 3 4
1 −4 3 0
1 2 −7 4
1 0 3 −4

and initial distribution λ = (1/2, 1/2, 0, 0). We can calculate

2.3. CONTINUOUS TIME MARKOV CHAINS 85

We can calculate etQ easily using Matlab. For t = 0.01, 0.1, 1, 10, 100 we
have

Listing 2.9: Matlab code

1 [1/2 1/2 0 0] * expm(.01 * Q) = 0.4619 0.4901 0.0285 0.0194

2 [1/2 1/2 0 0] * expm(.1 * Q) = 0.2472 0.4112 0.1896 0.1520

3 [1/2 1/2 0 0] * expm(1 * Q) = 0.1000 0.2061 0.3000 0.3939

4 [1/2 1/2 0 0] * expm(10 * Q) = 0.1000 0.2000 0.3000 0.4000

5 [1/2 1/2 0 0] * expm(100 * Q) = 0.1000 0.2000 0.3000 0.4000.

Looking at the example, we see that the distribution of the chain seems
to converge to a stationary distribution.

2.3.8 Irreducibility, Recurrence and Positive Recur-
rence

As in the case of discrete time Markov chains, we want to establish con-
ditions under which a CTMC has a unique stationary distribution. As it
transpires, these conditions are basically the same as those for discrete time
Markov chains. This is because it is the structure of the jump chain that
determines whether a stationary distribution exists or not.

We say a state i leads to a state j (written i → j) if

Pi(Xt = j for some t ≥ 0) > 0.

We say i and j communicate (or i ↔ j) if i → j and j → i. The following
theorem shows that it is sufficient to look at the jump chain in order to
determine communicating classes.

Theorem 2.3.10. Consider a CTMC {Xt}t≥0 with Q-matrix Q and jump
chain {Yn}n≥0. For distinct states i and j the following are equivalent

(i) i → j.

(ii) i → j for the jump chain.

(iii) qi,k1qk1,k2 · · · qkn,j > 0 for some n > 0 and states k1, . . . , kn.

(iv) pt(i, j) > 0 for all t > 0.

(v) pt(i, j) > 0 for some t > 0.

Proof. See [3].

86 CHAPTER 2. POISSON PROCESSES AND CTMCS

As in the discrete time case, a CTMC is irreducible if i ↔ j for all
i, j ∈ X .

We say a state i is recurrent if

Pi({t ≥ 0 : Xt = i} is unbounded) = 1.

We say a state j is transient if

Pi({t ≥ 0 : Xt = i} is unbounded) = 0.

Again, it is sufficient to look at the jump chain to establish that these
properties hold.

Theorem 2.3.11. Consider a CTMC {Xt}t≥0 with jump chain {Yn}n≥0.

(i) If i is recurrent for {Yn}n≥0 it is recurrent for {Xt}t≥0.

(ii) If i is transient for {Yn}n≥0 it is recurrent for {Xt}t≥0.

Proof. See [3].

A state i is positive recurrent if it is positive recurrent for the jump chain.

2.3.9 Invariant Measures and Stationary Distribution

Definition 2.3.12 (Invariant Measure). We say a measure (remember this
is a vector with non-negative elements) µ is invariant for a Q-matrix Q if

µQ = 0.

Invariant measures of CTMCs are closely related to invariant measures
for the associated jump chain.

Theorem 2.3.13. Given a CTMC {Xt}t≥0 with Q-matrix Q and jump ma-
trix J , the following are equivalent

(i) µ is invariant for Q.

(ii) νJ = ν, where νi = µiqi for all i ∈ X .

Note that 1/qi is the expected holding time in state i, so µ has elements
µi = νi/qi and is thus a invariant measure for the jump chain reweighted
by the expected time spent in each state. Note that neither µ or ν is nec-
essarily a probability distribution. Furthermore, even if µ is a probability
distribution, the ν defined in respect to it will probably not be a probability

2.3. CONTINUOUS TIME MARKOV CHAINS 87

distribution (until it is normalized). This is also the case if ν is a probability
distribution.

We are now able to give conditions for the existence of a unique stationary
measure for a CTMC {Xt}t≥0. Unsurprisingly, these are the same conditions
as for discrete time Markov chains.

Theorem 2.3.14. Let Q be an irreducible Q matrix. Then, the following
are equivalent.

(i) Every state is positive recurrent.

(ii) Some state, i, is positive recurrent.

(iii) Q has an invariant distribution ρ.

Example 2.3.15. Given that a stationary distribution exists, we can find
it by solving the linear system ρQ = 0. Consider the example from earlier
with Q matrix

Q =

−9 2 3 4
1 −4 3 0
1 2 −7 4
1 0 3 −4

 .

Solving this system, we find ρ = (1/10, 2/10, 3/10, 4/10).

MENTION LIMITING DISTRIBUTION

2.3.10 Reversibility and Detailed Balance

As is the case with discrete time Markov chains, reversible chains are
particularly nice to work with. This largely due to detailed balance equations
holding.

Theorem 2.3.16. Given a CTMC {Xt}t≥0 with irreducible Q-matrix Q
and invariant distribution ρ (which also serves as the initial distribution of

{Xt}t≥0). The process {X̂t}t≥0 defined by X̂t = XT−t is Markov (ρ, Q̂).

Additionally, Q̂ is irreducible and has invariant distribution ρ.

Proof. See [3].

We say a CTMC is reversible if Q = Q̂.

Definition 2.3.17 (Detailed Balance Equations). A Q-matrix, Q, and a
measure µ are in detailed balance if

µiqi,j = µjqi,j for all i, j ∈ X .

88 CHAPTER 2. POISSON PROCESSES AND CTMCS

The following theorem is more or less identical to the discrete version.

Theorem 2.3.18. If a Q-matrix, Q, and a measure µ are in detailed balance
then µ is invariant for Q.

Proof. For a given i ∈ X , we have

(µQ)i =
∑

j∈X

µjqj,i =
∑

j∈X

µiqi,j = 0.

The only CTMCs that satisfy detailed balance are reversible ones.

Theorem 2.3.19. Let Q be an irreducible Q-matrix and ρ a distribution.
Suppose {Xt}t≥0 is Markov (ρ, Q). Then, the following are equivalent

(i) {Xt}t≥0 is reversible.

(ii) Q and ρ are in detailed balance.

Proof. See [3].

Chapter 3

Gaussian Processes and
Stochastic Differential
Equations

3.1 Gaussian Processes

Gaussian processes are a reasonably large class of processes that have
many applications, including in finance, time-series analysis and machine
learning. Certain classes of Gaussian processes can also be thought of as
spatial processes. We will use these as a vehicle to start considering more
general spatial objects.

Definition 3.1.1 (Gaussian Process). A stochastic process {Xt}t≥0 is Gaus-
sian if, for any choice of times t1, . . . , tn, the random vector (Xt1 , . . . , Xtn)
has a multivariate normal distribution.

3.1.1 The Multivariate Normal Distribution

Because Gaussian processes are defined in terms of the multivariate nor-
mal distribution, we will need to have a pretty good understanding of this
distribution and its properties.

Definition 3.1.2 (Multivariate Normal Distribution). A vectorX = (X1, . . . , Xn)
is said to be multivariate normal (multivariate Gaussian) if all linear combi-
nations of X, i.e. all random variables of the form

n∑

k=1

αkXk

have univariate normal distributions.

89

90 CHAPTER 3. GAUSSIAN PROCESSES ETC.

This is quite a strong definition. Importantly, it implies that, even if all of
its components are normally distributed, a random vector is not necessarily
multivariate normal.

Example 3.1.3 (A random vector with normal marginals that is not multi-
variate normal). Let X1 ∼ N(0, 1) and

X2 =

{
X1 if |X1| ≤ 1

−X1 if |X1| > 1
.

Note that X2 ∼ N(0, 1). However, X1 + X2 is not normally distributed,
because |X1+X2| ≤ 2, which implies X1+X2 is bounded and, hence, cannot
be normally distributed.

Linear transformations of multivariate normal random vectors are, again,
multivariate normal.

Lemma 3.1.4. Suppose X = (X1, . . . , Xn) is multivariate normal and A is
an m× n real-valued matrix. Then, Y = AX is also multivariate normal.

Proof. Any linear combination of Y1, . . . , Ym is a linear combination of linear
combinations of X1, . . . , Xn and, thus, univariate normal.

Theorem 3.1.5. A multivariate normal random vector X = (X1, . . . , Xn)
is completely described by a mean vector µ = EX and a covariance matrix
Σ = Var(X).

Proof. The distribution of X is described by its characteristic function which
is

Eexp {iθ⊺X} = Eexp

{
i

n∑

i=1

θiXi

}
.

Now, we know
∑n

i=1 θiXi is a univariate normal random variable (because
X is multivariate normal). Let m = E

∑n
i=1 θiXi and σ2 = Var (

∑n
i=1 θiXi).

Then,

E

{
i

n∑

i=1

θiXi

}
= exp

{
im− 1

2
σ2

}
.

Now

m = E

n∑

i=1

θiXi =
n∑

i=1

θiµi

and

σ2 = Var

(
n∑

i=1

θiXi

)
=

n∑

i=1

n∑

j=1

θiθjCov(Xi, Xj) =
n∑

j=1

n∑

j=1

θiθjΣi,j .

So, everything is specified by µ and Σ.

3.1. GAUSSIAN PROCESSES 91

INDEPENDENCE

There is nothing too difficult about dealing with the mean vector µ. How-
ever, the covariance matrix makes things pretty difficult, especially when we
wish to simulate a high dimensional random vector. In order to simulate
Gaussian processes effectively, we need to exploit as many properties of co-
variance matrices as possible.

Symmetric Positive Definite and Semi-Positive Definite Matrices

Covariance matrices are members of a family of matrices called symmetric

positive definite matrices.

Definition 3.1.6 (Positive Definite Matrices (Real-Valued)). An n×n real-
valued matrix, A, is positive definite if and only if

x⊺Ax > 0 for all x 6= 0.

If A is also symmetric, then A is called symmetric positive definite (SPD).
Some important properties of SPD matrices are

(i) rank(A) = n.

(ii) |A| > 0.

(iii) Ai,i > 0.

(iv) A−1 is SPD.

Lemma 3.1.7 (Necessary and sufficient conditions for an SPD). The fol-
lowing are necessary and sufficient conditions for an n × n matrix A to be
SPD

(i) All the eigenvalues λ1, . . . , λn of A are strictly positive.

(ii) There exists a unique matrix C such that A = CC⊺, where C is a real-
valued lower-triangular matrix with positive diagonal entries. This is
called the Cholesky decomposition of A.

Definition 3.1.8 (Positive Semi-definite Matrices (Real-Valued)). An n×n
real-valued matrix, A, is positive semi-definite if and only if

x⊺Ax ≥ 0 for all x 6= 0.

92 CHAPTER 3. GAUSSIAN PROCESSES ETC.

If A is also symmetric, then A is called symmetric positive semi-definite
(SPSD). Note that if A is an SPSD then there is a real-valued decomposition

A = LL⊺,

though it is not necessarily unique and L may have zeroes on the diagonals.

Lemma 3.1.9. Covariance matrices are SPSD.

Proof. Given an n × 1 real-valued vector x and a random vector Y with
covariance matrix Σ, we have

Var (x⊺Y) = x⊺Var (Y)x.

Now this must be non-negative (as it is a variance). That is, it must be the
case that

x⊺Var (Y)x ≥ 0,

so Σ is positive semi-definite. Symmetry comes from the fact that Cov(X, Y) =
Cov(Y,X).

Lemma 3.1.10. SPSD matrices are covariance matrices.

Proof. Let A be an SPSD matrix and Z be a vector of random variables with
Var(Z) = I. Now, as A is SPSD, A = LL⊺. So,

Var(LZ) = LVar(Z)L⊺ = LIL⊺ = A,

so A is the covariance matrix of LZ.

COVARIANCE POS DEF ...

Densities of Multivariate Normals

If X = (X1, . . . , Xn) is N(µ,Σ) and Σ is positive definite, then X has the
density

f(x) = f(x1, . . . , xn) =
1√

(2π)n|Σ|
exp

{
−1

2
(x− µ)⊺Σ−1(x− µ)

}
.

3.1. GAUSSIAN PROCESSES 93

Simulating Multivariate Normals

One possible way to simulate a multivariate normal random vector is
using the Cholesky decomposition.

Lemma 3.1.11. If Z ∼ N(0, I), Σ = AA⊺ is a covariance matrix, and
X = µ+ AZ, then X ∼ N(µ,Σ).

Proof. We know from lemma 3.1.4 that AZ is multivariate normal and so
is µ + AZ. Because a multivariate normal random vector is completely
described by its mean vector and covariance matrix, we simple need to find
EX and Var(X). Now,

EX = Eµ+ EAZ = µ+ A0 = µ

and

Var(X) = Var(µ+ AZ) = Var(AZ) = AVar(Z)A⊺ = AIA⊺ = AA⊺ = Σ.

Thus, we can simulate a random vector X ∼ N(µ,Σ) by

(i) Finding A such that Σ = AA⊺.

(ii) Generating Z ∼ N(0, I).

(iii) Returning X = µ+ AZ.

Matlab makes things a bit confusing because its function ‘chol’ produces
a decomposition of the form B⊺B. That is, A = B⊺. It is important to
be careful and think about whether you want to generate a row or column
vector when generating multivariate normals.

The following code produces column vectors.

Listing 3.1: Matlab code

1 mu = [1 2 3]’;

2 Sigma = [3 1 2; 1 2 1; 2 1 5];

3 A = chol(Sigma);

4 X = mu + A’ * randn(3,1);

The following code produces row vectors.

Listing 3.2: Matlab code

1 mu = [1 2 3];

2 Sigma = [3 1 2; 1 2 1; 2 1 5];

3 A = chol(Sigma);

4 X = mu + randn(1,3) * A;

94 CHAPTER 3. GAUSSIAN PROCESSES ETC.

The complexity of the Cholesky decomposition of an arbitrary real-valued
matrix is O(n3) floating point operations.

3.1.2 Simulating a Gaussian Processes Version 1

Because Gaussian processes are defined to be processes where, for any
choice of times t1, . . . , tn, the random vector (Xt1 , . . . , Xtn) has a multivariate
normal density and a multivariate normal density is completely describe by
a mean vector µ and a covariance matrix Σ, the probability distribution of
Gaussian process is completely described if we have a way to construct the
mean vector and covariance matrix for an arbitrary choice of t1, . . . , tn.

We can do this using an expectation function

µ(t) = EXt

and a covariance function

r(s, t) = Cov(Xs, Xt).

Using these, we can simulate the values of a Gaussian process at fixed times
t1, . . . , tn by calculating µ where µi = µ(t1) and Σ, where Σi,j = r(ti, tj) and
then simulating a multivariate normal vector.

In the following examples, we simulate the Gaussian processes at evenly
spaced times t1 = 1/h, t2 = 2/h, . . . , tn = 1.

Example 3.1.12 (Brownian Motion). Brownian motion is a very important
stochastic process which is, in some sense, the continuous time continuous
state space analogue of a simple random walk. It has an expectation function
µ(t) = 0 and a covariance function r(s, t) = min(s, t).

Listing 3.3: Matlab code

1 %use mesh size h

2 m = 1000; h = 1/m; t = h : h : 1;

3 n = length(t);

4

5 %Make the mean vector

6 mu = zeros(1,n);

7 for i = 1:n

8 mu(i) = 0;

9 end

10

11 %Make the covariance matrix

12 Sigma = zeros(n,n);

3.1. GAUSSIAN PROCESSES 95

13 for i = 1:n

14 for j = 1:n

15 Sigma(i,j) = min(t(i),t(j));

16 end

17 end

18

19 %Generate the multivariate normal vector

20 A = chol(Sigma);

21 X = mu + randn(1,n) * A;

22

23 %Plot

24 plot(t,X);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t

X
t

Figure 3.1.1: Plot of Brownain motion on [0, 1].

Example 3.1.13 (Ornstein-Uhlenbeck Process). Another very important
Gaussian process is the Ornstein-Uhlenbeck process. This has expectation
function µ(t) = 0 and covariance function r(s, t) = e−α|s−t|/2.

Listing 3.4: Matlab code

1 %use mesh size h

2 m = 1000; h = 1/m; t = h : h : 1;

3 n = length(t);

4 %paramter of OU process

5 alpha = 10;

6

96 CHAPTER 3. GAUSSIAN PROCESSES ETC.

7 %Make the mean vector

8 mu = zeros(1,n);

9 for i = 1:n

10 mu(i) = 0;

11 end

12

13 %Make the covariance matrix

14 Sigma = zeros(n,n);

15 for i = 1:n

16 for j = 1:n

17 Sigma(i,j) = exp(-alpha * abs(t(i) - t(j)) / 2);

18 end

19 end

20

21 %Generate the multivariate normal vector

22 A = chol(Sigma);

23 X = mu + randn(1,n) * A;

24

25 %Plot

26 plot(t,X);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

t

X
t

Figure 3.1.2: Plot of an Ornstein-Uhlenbeck process on [0, 1] with α = 10.

Example 3.1.14 (Fractional Brownian Motion). Fractional Brownian mo-
tion (fBm) is a generalisation of Brownian Motion. It has expectation func-
tion µ(t) = 0 and covariance function Cov(s, t) = 1/2(t2H + s2H − |t− s|2H),

3.1. GAUSSIAN PROCESSES 97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

4

t

X
t

Figure 3.1.3: Plot of an Ornstein-Uhlenbeck process on [0, 1] with α = 100.

where H ∈ (0, 1) is called the Hurst parameter. When H = 1/2, fBm re-
duces to standard Brownian motion. Brownian motion has independent in-
crements. In contrast, for H > 1/2 fBm has positively correlated increments
and for H < 1/2 fBm has negatively correlated increments.

Listing 3.5: Matlab code

1 %Hurst parameter

2 H = .9;

3

4 %use mesh size h

5 m = 1000; h = 1/m; t = h : h : 1;

6 n = length(t);

7

8 %Make the mean vector

9 mu = zeros(1,n);

10 for i = 1:n

11 mu(i) = 0;

12 end

13

14 %Make the covariance matrix

15 Sigma = zeros(n,n);

16 for i = 1:n

17 for j = 1:n

18 Sigma(i,j) = 1/2 * (t(i)^(2*H) + t(j)^(2*H)...

19 - (abs(t(i) - t(j)))^(2 * H));

98 CHAPTER 3. GAUSSIAN PROCESSES ETC.

20 end

21 end

22

23 %Generate the multivariate normal vector

24 A = chol(Sigma);

25 X = mu + randn(1,n) * A;

26

27 %Plot

28 plot(t,X);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

X
t

Figure 3.1.4: Plot of fractional Brownian motion on [0, 1] with H = 0.1.

3.1.3 Stationary and Weak Stationary Gaussian Pro-
cesses

Gaussian processes (and stochastic processes in general) are easier to work
with if they are stationary stochastic processes.

Definition 3.1.15 (Stationary Stochastic Process). A stochastic process
{Xt}t≥0 is said to be stationary if the random vectors (Xt1 , Xt2 , . . . , Xtn)
and (Xt1+s, Xt2+s, . . . , Xtn+s) have the same distribution for all choices of
s, n and t1, t2, . . . , tn.

An example of such a process would be an irreducible positive recurrent
continuous time Markov chain started from its stationary distribution.

3.1. GAUSSIAN PROCESSES 99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

t

X
t

Figure 3.1.5: Plot of fractional Brownian motion on [0, 1] with H = 0.9.

The conditions for a stochastic process to be stationary are quite strict.
Often, a slightly weaker version of stationarity, called weak stationarity is
required instead.

Definition 3.1.16 (Weak Stationary Stochastic Process). A stochastic pro-
cess {Xt}t≥0 is said to be weak stationary (sometimes wide sense stationary

or second order stationary) if EXt = c for all t ≥ 0 and Cov(Xt, Xt+s) does
not depends on t.

An example of a weak stationary process is the Ornstein-Uhlenbeck pro-
cess, as EXt = µ(t) = 0 and Cov(Xt, Xt+s) = r(t, t + s) = e−α|t−(t+s)|/2 =
e−αs/2 .

Lemma 3.1.17. Gaussian processes that are weak stationary are stationary.

Proof. We know from theorem 3.1.5 that Gaussian distributions are entirely
determined by their mean vector and covariance matrix. Since the mean and
covariance of a weakly stationary process do not change when the times are
all shifted by s, a weakly stationary Gaussian process is stationary.

An Ornstein-Uhlenbeck process is a weak stationary Gaussian process, so
it is a stationary stochastic process.

The covariance matrix of a stationary Gaussian process evaluated at
equidistant times (e.g. t0 = 0, t1 = 1/h, t2 = 2/h, . . . , tn = 1) has a par-

100 CHAPTER 3. GAUSSIAN PROCESSES ETC.

ticularly nice form:

Σ =

σ0 σ1 σ2 · · · σn

σ1 σ0 σ1 · · · σn−1

σ2 σ1 σ0
. . . σn−2

...
...

...
. . .

...
σn σn−1 σn−2 · · · σ0

.

Technically, it is a symmetric Toeplitz matrix.

Definition 3.1.18 (Toeplitz Matrix). A Toeplitz matrix, A, is a matrix
where each diagonal takes a single, constant value. That is, ai,j = ai+1,j+1

for all i, j ∈ {1, . . . , n− 1}.

We can embed this matrix in a 2n× 2n circulant matrix

Σ =

σ0 σ1 σ2 · · · σn σn−1 σn−2 · · · σ2 σ1

σ1 σ0 σ1 · · · σn−1 σn σn−1 · · · σ3 σ2

σ2 σ1 σ0
. . . σn−2 σn−1 σn · · · σ4 σ3

...
. .

...
σn σn−1 σn−2 · · · σ0 σ1 σ2 · · · σn σn−1

σn−1 σn σn−1 · · · σ1 σ0 σ1 · · · σn−3 σn−2

σn−2 σn−1 σn · · · σ2 σ1 σ0 · · · σn−4 σn−3

σn−3 σn−2 σn−1 · · · σ3 σ2 σ1 · · · σn−5 σn−4
...

. .
...

σ1 σ2 σ3 · · · σn−1 σn−2 σn−3 · · · σ1 σ0

.

If σ0 ≥ σ1 ≥ · · · ≥ σn ≥ 0 and 2σk ≤ σk−1 + σk+1 for k = 1, . . . , n − 1,
then C is also a covariance matrix.

Definition 3.1.19 (Circulant Matrix). A circulant matrix is a matrix of the
form

B =

b0 bn−1 · · · b2 b1
b1 b0 · · · b3 b2
...

.
...

bn−1 bn−2 · · · b1 b0

 .

It is fully specified by b, its first column. The last row of a circulant matrix is
the first column in reverse order. The remaining rows are cyclic permutations
of this row.

3.1. GAUSSIAN PROCESSES 101

This might not seem very useful, but the strength of this representation
comes from its link to the discrete Fourier transform and, through it, to that
wonder of numerical analysis: the Fast Fourier Transform (FFT).

Definition 3.1.20 (Discrete Fourier Transform). Given a complex valued
vector x = (x0, . . . , xn)

⊺, we define its discrete Fourier transform by x̃ =
(x̃0, . . . , x̃n−1)

⊺, where

x̃j =
n−1∑

k=0

e−(2πi/n)jkxk =
n−1∑

k=0

ωjkxk

for j = 0, . . . , n− 1, where ω = e−(2πi/n).

Note that the discrete Fourier transform is equivalent to calculating

x̃ = Fx,

where

F =

1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)2

.

As it turns out, F−1 = F̄ /n. Normally solving the system x̃ = Fx would
require O(n2) steps, but the FFT reduces this to O(n log n) steps.

The link to circulant matrices is as follows. Let b = (b0, b1, . . . , bn−1)
⊺ be

a complex-valued vector. The circulant matrix corresponding to b is

B =

b0 bn−1 · · · b2 b1
b1 b0 · · · b3 b2
...

.
...

bn−1 bn−2 · · · b1 b0

 .

The eigenvalues of B, λ0, . . . , λn−1 are given by

λj = b⊺f̄j,

for j = 0, . . . , n− 1, with associated eigenvectors f0, . . . , fn−1, where fj is the
jth column of F .

If B is diagonalizable, then it can be written as B = PDP−1, where the
columns of P are the right eigenvectors of B and D = diag(λ0, . . . , λn−1).
Thus, if we can calculate

λ = (λ0, . . . , λn−1) = F̄b

102 CHAPTER 3. GAUSSIAN PROCESSES ETC.

and

E = F
√
diag(λ/n),

then

EĒ⊺ = Fdiag(λ)F̄ /n = Fdiag(λ)F−1 = B.

In other words E is the complex square-root of the matrix B.
Let B be the covariance matrix of a zero-mean Gaussian process evaluated

at equidistant steps. Now, if we write E = E1 + iE2 then

B = EĒ⊺ = (E1 + iE2) (E
⊺

1 − iE⊺

2) = E1E
⊺

1 + E2E
⊺

2 + i (E2E
⊺

1 − E1E
⊺

2)

As B is real-valued, B = E1E
⊺

1 + E2E
⊺

2 .
Let Z1 and Z2 be N(0, I) and define

X = EZ = (E1 + iE2)(Z1 + iZ2) = (E1Z1 − E2Z2) + i(E2Z1 + E1Z2).

Let

X1 = R(X) = E1Z1 − E2Z2

and

X2 = I(X) = E2Z1 + E1Z2.

Then, clearly, EX1 = 0 and

Var(X1) = Var(E1Z1 − E2Z2) = E1E
⊺

1 + E2E
⊺

2 = B.

The calculation for X2 is more or less identical. Note X1 and X2 are not
independent of one another.

This gives the following algorithm for generating a stationary Gaussian
process at equidistant intervals. Using the FFT, the algorithm is O(n log n).

Algorithm 3.1.1 (Generating a Stationary Gaussian Process).

(i) Set c = (σ0, σ1, . . . , σn−1, σn, σn−1, . . . , σ1).

(ii) Compute λ = Fc using the FFT.

(iii) Generate Z = Y1 +Y2 where Y1,Y2 ∼ N(0, I).

(iv) Compute η =
√
diag(λ/n)Z.

(v) Compute V = Fη and let A be the first n+ 1 elements of V.

(vi) Output X = R(A).

3.1. GAUSSIAN PROCESSES 103

Example 3.1.21. Consider a stationary, zero-mean, Gaussian process on
an equally-spaced mesh of n + 1 = 104 + 1 points on [a, b] = [0, 5] with
σk = exp{−(b− a)k/n} for k = 0, 1, . . . , n.

Listing 3.6: Matlab code

1 n=10^4; a=0; b=5;

2 t=linspace(a,b,n+1); sigma=exp(-(t-t(1)));

3 c=[sigma sigma((end-1):-1:2)]’;

4 lambda=fft(c); %eigenvalues

5 Z=randn(2*n,1)+sqrt(-1).*randn(2*n,1); %complex normal vectors

6 eta=sqrt(lambda./(2*n)).*Z;

7 V=fft(eta);

8 A=V(1:(n+1));

9 X=real(A);

10 plot(t,X)

3.1.4 Finite Dimensional Distributions

A very nice property of Gaussian processes is that we know their finite

dimensional distributions.

Definition 3.1.22 (Finite Dimensional Distributions). The finite dimen-
sional distributions of a stochastic process {Xt}t≥0 are the distributions of
all vectors of the form (Xt1 , . . . , Xtn) with n > 0 and 0 ≤ t1 ≤ · · · ≤ tn.

The finite dimensional distributions tell us a lot about the behaviour of
a stochastic process. It is worth noting, however, that they do not fully
specify stochastic processes. For example, Brownian motion is almost surely
continuous but this property does not follow simply from specifying the finite
dimensional distributions.

We can simulate the finite dimensional skeletons of a Gaussian process ex-
actly. That is, we can generate Xt1 , . . . , Xtn for any choice of n and t1, . . . , tn.
This is not always true for other stochastic processes. However, we do en-
counter a new form of error, discretization error.

Definition 3.1.23 (Discretization Error). Discretization error is the error
that arises from replacing a continuous object with a discrete object.

For example, if we wish to calculate the variance of the proportion of time
that a Gaussian process spends above 0, or the expectation of the first time
a process hits a set, A, then we will encounter an error in considering the
process only at a fixed number of points.

104 CHAPTER 3. GAUSSIAN PROCESSES ETC.

Discretization error needs to be considered when we decide on a sam-
pling budget. Consider, for example, an evenly spaced mesh of points t1 =
1/m, t2 = 2/m, . . . tn = 1. As m gets bigger, the mesh gets finer and the
discretization error gets smaller. We still have statistical error, however, so
we need to make sure we generate a large enough sample of realizations of
the stochastic process (determined by the sample size N). The total work
done by our simulation is then given by

work = number of samples× work to make one sample = Nf(m).

Usually, f grows at least linearly in m. In the case of Cholesky decompo-
sition, for example, it is O(m3). For a fixed level of work, we need to decide
on how much effort to allocate to reducing discretization error (how large m
should be) and how much effort to allocate to reducing statistical error (how
large N should be). Finding the optimal tradeoff can be difficult. We will
consider such tradeoffs in a number of situations.

3.1.5 Marginal and Conditional Multivariate Normal
Distributions

The multivariate normal distribution has many attractive properties. In
particular, its marginal distributions are also multivariate normal. In addi-
tion, if we condition on part of the a multivariate normal vector, the remain-
ing values are also multivariate normal.

To see this, we need to write normal random vectors in the appropriate
form. LetX ∼ N(µ,Σ). We can decomposeX into two parts,X = (X1,X2)

⊺.
We can then write µ as (µ1,µ2)

⊺ and Σ as

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Theorem 3.1.24 (Multivariate Normal Marginal Distributions). GivenX =
(X1,X2) ∼ N(µ,Σ),

X1 ∼ N(µ1,Σ11),

and
X2 ∼ N(µ2,Σ22).

Theorem 3.1.25 (Multivariate Normal Conditional Distributions). Given
X = (X1,X2) ∼ N(µ,Σ), X2 conditional on X1 is multivariate normal with

E[X2 |X1] = µ2 + Σ21Σ
−1
11 (X1 − µ1)

and
Var(X2 |X1) = Σ22 − Σ21Σ

−1
11 Σ12.

3.1. GAUSSIAN PROCESSES 105

3.1.6 Interpolating Gaussian Processes

Because we know the finite dimensional distributions of Gaussian pro-
cesses and know a lot about working with the multivariate normal distri-
bution, we are able to interpolate between already simulated points of a
Gaussian process. We can do this by simply drawing the new points condi-
tional on the values that we have already generate. For example, if we have
generate values for the process at 0.5 and 1, then we can generate values at
the points 0.25 and 0.75 conditional on X0.5 and X1.

There are a number of reasons why interpolation might be useful. One
is that it might not make sense to simulate the whole stochastic process on
a fine mesh (which is expensive), but rather to simulate a coarse path of the
stochastic process first and then focus our efforts on a particular region of
this path. For example, if we are trying to estimate the first time a stochastic
process hits a particular value, then we might want to focus our simulation
efforts on the part of the stochastic process that is closest to this value. We
should be careful, however, as simulating in this way could introduce a bias.

Example 3.1.26 (Iteratively Updating Brownian Motion). Consider an ex-
ample where we update Brownian motion in an iterative fashion. Remem-
ber, Brownian motion has mean function µ(t) = 0 and covariance function
r(s, t) = min(s, t). We interpolate between points to simulate a process on
an increasingly fine mesh.

Listing 3.7: Matlab code

1 num_levels = 10;

2

3 %Make the first two points (at 0.5 and 1)

4 t = [.5 1]; n = length(t);

5 Sigma = zeros(n,n);

6 for i = 1:n

7 for j = 1:n

8 Sigma(i,j) = min(t(i),t(j));

9 end

10 end

11 X = chol(Sigma)’ * randn(2,1);

12

13 plot([0; t’],[0; X]);

14 axis([0 1 -2.5 2.5]);

15

16 %Interpolate

17 for level = 2:num_levels

18 %Make the additional mesh points

106 CHAPTER 3. GAUSSIAN PROCESSES ETC.

19 t_new = 1/2^level : 2/2^level : (2^level-1)/(2^level);

20 n_new = length(t_new);

21

22 %Record the time points for the whole process

23 t_temp = [t t_new];

24 n_temp = length(t_temp);

25

26 %Make a covariance matrix for the whole thing

27 Sigma_temp = zeros(n_temp,n_temp);

28 for i = 1:n_temp

29 for j = 1:n_temp

30 Sigma_temp(i,j) = min(t_temp(i),t_temp(j));

31 end

32 end

33

34 %Make the separate Sigma components

35 Sigma_11 = Sigma;

36 Sigma_21 = Sigma_temp(n+1:n_temp, 1:n);

37 Sigma_12 = Sigma_temp(1:n, n+1:n_temp);

38 Sigma_22 = Sigma_temp(n+1:n_temp, n+1:n_temp);

39

40 temp_mean = Sigma_21 * inv(Sigma_11) * X;

41 Sigma_new = Sigma_22 - Sigma_21 * inv(Sigma_11) * Sigma_12;

42 X_new = temp_mean + chol(Sigma_new)’ * randn(n_new,1);

43 X = [X; X_new];

44 t = t_temp;

45 n = n_temp;

46 Sigma = Sigma_temp;

47 [dummy index] = sort(t);

48 another_dummy = waitforbuttonpress;

49

50 plot([0; t(index)’],[0; X(index)]);

51 axis([0 1 -2.5 2.5]);

52 end

3.1.7 Markovian Gaussian Processes

If a Gaussian process, {Xt}t≥0, is Markovian, we can exploit this structure
to simulate the process much more efficiently. Because {Xt}t≥0 is Markovian,
we can use we only need to know the value of Xti in order to generate Xti+1

.
Define

σi,i+1 = Cov(Xti , Xti+1
)

3.1. GAUSSIAN PROCESSES 107

and
µi = EXti .

By theorem 3.1.24, we know that (Xti , Xti+1
)⊺ has a multivariate normal

distribution. In particular,
(

Xti

Xti+1

)
∼ N

((
µi

µi+1

)
,

(
σi,i σi,i+1

σi,i+1 σi+1,i+1

))
.

Using theorem 3.1.25, we have

Xti+1
|Xti = xi ∼ N

(
µi +

σi,i+1

σi, i
(xi − µi) , σi+1,i+1 −

σ2
i,i+1

σi,i

)
.

Algorithm 3.1.2 (Generating a Markovian Gaussian Process).

(i) Draw Z ∼ N(0, 1). Set Xt1 = µ1 +
√
σi,iZ.

(ii) For i = 1, . . . ,m− 1 draw Z ∼ N(0, 1) and set

Xti+1
= µi +

σi,i+1

σi, i
(Xti − µi) +

√
σi+1,i+1 −

σ2
i,i+1

σi,i

Z.

Example 3.1.27 (Brownian Motion). Consider Brownian motion, which is
a Markov process. Now,

µi = EXti = 0

and
σi,i+1 = min(ti, ti+1) = ti.

So, our updating formula is

Xti+1
= Xti +

(√
ti+1 − ti

)
Z.

Listing 3.8: Matlab code

1 m = 10^4; X = zeros(m,1);

2 h = 1/m;

3 X(1) = sqrt(h)*randn;

4

5 for i = 1:m-1

6 X(i+1) = X(i) + sqrt(h) * randn;

7 end

8

9 plot(h:h:1,X);

108 CHAPTER 3. GAUSSIAN PROCESSES ETC.

Example 3.1.28 (Ornstein-Uhlenbeck Process). The Ornstein-Uhlenbeck
process has

µi = EXti = 0

with

σi,i+1 = exp{α|ti − ti+1|/2}
and σi,i = 1. So, our updating formula is

Xti+1
= exp{−α|ti − ti+1|/2}Xti +

(√
1− exp{α|ti − ti+1|}

)
Z.

Listing 3.9: Matlab code

1 alpha = 50; m = 10^4;

2

3 X = zeros(m,1); h = 1/m;

4 X(1) = randn;

5

6 for i = 1:m-1

7 X(i+1) = exp(-alpha * h / 2)*X(i)...

8 + sqrt(1 - exp(-alpha * h))*randn;

9 end

10

11 plot(h:h:1,X);

3.2 Brownian Motion

One of the most fundamental stochastic processes. It is a Gaussian pro-
cess, a Markov process, a Lévy process, a Martingale and a process that is
closely linked to the study of harmonic functions (do not worry if you do not
know all these terms). It can be used as a building block when considering
many more complicated processes. For this reason, we will consider it in
much more depth than any other Gaussian process.

Definition 3.2.1 (Brownian Motion). A stochastic process {Wt}t≥0 is called
Brownian motion (a Wiener process) if:

(i) It has independent increments.

(ii) It has stationary increments.

(iii) Wt ∼ N(0, t) for all t ≥ 0.

3.2. BROWNIAN MOTION 109

(iv) It has almost surely continuous sample paths. That is,

P({ω : X(t, ω) is continuous in t}) = 1.

This definition implies that the increments of Brownian motion are nor-
mally distributed. Specifically, Wt+s−Wt ∼ N(0, s). This implies the follow-
ing simualtion scheme.

Listing 3.10: Matlab code

1 m = 10^3; h = 1/m;

2 X = cumsum(sqrt(h)*randn(m,1));

3 plot(h:h:1,X);

The first three parts of the definition of Brownian motion are equivalent to
saying Brownian motion is a Gaussian process with Cov(Xt, Xs) = min(t, s)
and EXt = 0. However, the almost sure continuity of the paths of Brownian
motion does not follow from this.

Theorem 3.2.2. The following two statements are equivalent for a stochastic
process {Xt}t≥0.

(i) {Xt}t≥0 has stationary independent increments and Xt ∼ N(0, t).

(ii) {Xt}t≥0 is a Gaussian process with µ(t) = EXt = 0 and r(s, t) =
Cov(Xt, Xs) = min(t, s).

Proof.

Part 1. First, we show (i) implies (ii). In order to show this, we need to show
that (Xt1 , . . . , Xtn) is multivariate normal for all choices of 0 ≤ t1 ≤ · · · ≤ tn
and n ≥ 1. In order to Xt1 , . . . , Xtn to be multivariate normal, we need

110 CHAPTER 3. GAUSSIAN PROCESSES ETC.

∑n
k=1 αkXtk to be univariate normal (for all choices of n etc.). Now,

n∑

k=1

αkXtk = α1Xt1 +
n∑

k=2

αkXtk

= α1Xt1 +
n∑

k=2

αk

(
k∑

j=1

Xtj −
k−1∑

j=1

Xtj

)

= α1Xt1 +
n∑

k=2

αk

(
k∑

j=1

Xtj −
k∑

j=2

Xtj−1

)

=
n∑

k=1

αkXt1 +
n∑

k=2

k∑

j=2

αk

(
Xtj −Xtj−1

)

=

(
n∑

k=1

αk

)
Xt1 +

n∑

j=2

(
n∑

k=j

αk

)
(
Xtj −Xtj−1

)

= β1Xt1 +
n∑

j=2

βj

(
Xtj −Xtj−1

)
.

Because Xt1 and Xt2−Xt1 , Xt3−Xt2 , . . . are independent random variables, it
follows that the final equation results in a univariate normal random variable
(sums of independent normals are normal). Now, we just need to check the
expectation and covariance. It is easy to see that EXt = 0. In order to
calculate the covariance, assume that s < t. We have that,

Cov(Xs, Xt) = EXsXt − EXsEXt = EXsXt,

and
EXsXt = EXs(Xt −Xs +Xs) = EX2

s + EXs(Xt −Xs)

and, as the independent increments property implies EXs(Xt −Xs) = 0,

Cov(Xs, Xt) = EX2
s = s.

Repeating this with t ≥ s, we get Cov(Xs, Xt) = min(s, t).

Part 2. We show that (ii) implies (i). It follows immediately from the
definition in (ii) that Xt ∼ N(0, t). It is also immediate that Xt+s − Xt

is univariate normal (as this is a linear combination of multivariate normal
random variables). We can thus show this increment is stationary by showing
that mean is constant and the variance only depends on s. Now, EXt+s−Xt =
0 and

Var(Xt+s −Xs) = Var(Xt) + Var(Xs)− 2Cov(Xs, Xt) = t+ s− 2t = s.

3.2. BROWNIAN MOTION 111

Thus, the increments are stationary. Because the increments are multivariate
normal, we can show the increments of the process are independent if we can
show the covariance between increments is 0. So, take u < v ≤ s < t. Then,

Cov(Xv −Xu, Xt −Xs)

= Cov(Xv, Xt)− Cov(Xv, Xs)− Cov(Xu, Xt) + Cov(Xu, Xs)

= min(v, t)−min(v, s)−min(u, t) + min(u, s)

= v − v − u+ u = 0.

So, non-overlapping increments are independent.

3.2.1 Existence

Because it is a nice proof, we will show that Brownian motion exists. We
will do this constructively. Along the way, you might get some ideas about
certain ways you might simulate Brownian motion. Before we get to the
result itself, we need a couple of results. The first is a result that is often
useful.

Theorem 3.2.3. Let Z ∼ N(0, 1). Then, as x → ∞,

P(Z > x) ∼ 1

x

e−x2/2

√
2π

,

and
x

1 + x2

ex
2/2

√
2π

< P(Z > x) <
1

x

e−x2/2

√
2π

.

The next result is a little more technical and uninteresting (but cleans up
the coming proof).

Lemma 3.2.4. Suppose we have two random variables Xs and Xt, with
t > s, defined on the same probability space such that Xt−Xs ∼ N(0, t− s).
Then, there exists a random variable X(t+s)/2 defined on the same space such
that

X(t+s)/2 −Xs
D
= Xt −X(t+s)/2,

with X(t+s)/2 −Xs and Xt −X(t+s)/2 independent and identically distributed
with N(0, (t− s)/2) distributions. Also,

∣∣∣∣X(t+s)/2 −
Xt +Xs

2

∣∣∣∣ =
1

2
|V |,

where V ∼ N(0, t− s).

112 CHAPTER 3. GAUSSIAN PROCESSES ETC.

Proof. Let U = Xt − Xs. Take V ∼ N(0, t − s) independent of U . Define
X(t+s)/2 by

Xt −X(t+s)/2 =
U + V

2
,

and

X(t+s)/2 −Xs =
U − V

2
.

That is, we set

X(t+s)/2 =
Xt

2
+

Xs

2
− V

2
.

Both Xt −X(t+s)/2 and X(t+s)/2 −Xs are clearly normal with mean 0. Now,

Var

(
U + V

2

)
=

Var(U)

4
+

Var(V)

4
= (t− s)/2,

and

Var

(
U − V

2

)
=

Var(U)

4
+

Var(V)

4
= (t− s)/2.

As they are normally distributed, we can show thatXt−X(t+s)/2 andX(t+s)/2−
Xs are independent by showing that their covariance is 0. Now,

Cov
(
Xt −X(t+s)/2, X(t+s)/2 −Xs

)

= E
(
Xt −X(t+s)/2

) (
X(t+s)/2 −Xs

)
− E

(
Xt −X(t+s)/2

)
E
(
X(t+s)/2 −Xs

)

= E
(
Xt −X(t+s)/2

) (
X(t+s)/2 −Xs

)
− 0 = E

(
U + V

2

)(
U − V

2

)

=
1

4
E
[
U2 − UV + UV − V 2

]
=

1

4
E
[
U2 − V 2

]
= 0.

For the final part, note that
∣∣∣∣X(t+s)/2 −

Xt +Xs

2

∣∣∣∣ =
∣∣∣∣
Xt

2
+

Xs

2
− V

2
− Xt

2
− Xs

2

∣∣∣∣ =
∣∣∣∣
V

2

∣∣∣∣ .

Remember that the difficult thing to show for Brownian motion is that it
is almost surely continuous. To show this, we are going to consider the space
C[0, 1], which is the space of continuous functions on [0, 1] with the norm
‖f‖ = max0≤t≤1 |f(t)|. Because we want to say something about convergence,
we need to recall a couple of definitions.

Definition 3.2.5 (Cauchy Sequence). We say a sequence (xn) is a normed
space is a Cauchy sequence if ‖xn − xm‖ → 0 as n,m → ∞. That is, for all
ǫ > 0, there is an integer N(ǫ) such that ‖xn − xm‖ < ǫ for all m,n > N(ǫ).

3.2. BROWNIAN MOTION 113

Definition 3.2.6 (Banach Space). We say a normed linear vector space X
is complete if every Cauchy sequence in X has a limit in X.

Lemma 3.2.7. The space C[0, 1] is a Banach space.

Proof. See almost any textbook on analysis.

We now prove the main theorem.

Theorem 3.2.8. Brownian motion exists and may be constructed from a
sequence of i.i.d. N(0, 1) random variables.

Proof. We construct Brownian motion by constructing a Cauchy sequence
on C[0, 1] that converges to Brownian motion. We will only construct it on
[0, 1], but it is not too much work to extend this to [0,∞). We begin with a
sequence of i.i.d. N(0, 1) random variables Z1, Z2, . . ., which we scale to get
the set of independent normal random variables

{Vk/2n : k = 1, 2, . . . , 2n, n ≥ 1},

where Vi/2n+1 ∼ N(0, 1/2n).
Now, define X0 = 0, X1 = V1 and use V1/2 to construct X1/2 using lemma

3.2.4. Then, X1/2 −X0 and X1 −X1/2 are i.i.d. N(0, 1/2) random variables.
If we continue, in an iterative fashion, using the supply of V s and lemma
3.2.4, we can construct

{Xk/2n , 0 ≤ k ≤ 2n, n ≥ 1},

such that
X 2k+1

2n+1
−X k

2n
and X k+1

2n
−X 2k+1

2n+1

are independent and both have N(0, 1/2n+1) distributions. Now, for each

n ≥ 1, define {W (n)
t }t∈[0,1] by

W
(n)
t (ω) =

{
Xt(ω) for t ∈ { k

2n
, 0 ≤ k ≤ 2n}

linear in each interval
[

k
2n
, k+1

2n

]
for t /∈ { k

2n
, 0 ≤ k ≤ 2n} ,

By construction, W (n) is continuous. If we can show that the {W (n)}n≥1

form a Cauchy sequence, then we know that their limit is also continuous (as
C[0, 1] is a Banach space). In order to do this, define

△(n)(ω) = max
0≤t≤1

|W (n+1)
t (ω)−W

(n)
t (ω)|

max
0≤k≤2n−1

max
k
2n

≤t≤ k+1
2n

|W (n+1)
t (ω)−W

(n)
t (ω)|.

114 CHAPTER 3. GAUSSIAN PROCESSES ETC.

Now,

max
k
2n

≤t≤ k+1
2n

|W (n+1)
t (ω)−W

(n)
t (ω)| =

∣∣∣∣∣
W

(n)
k/2 +W

(n)
(k+1)/2

2
−W

(n+1)
2k+1
2n+1

∣∣∣∣∣

=

∣∣∣∣
Xk/2 +X(k+1)/2

2
−X 2k+1

2n+1

∣∣∣∣

and, by lemma 3.2.4, we know that
∣∣∣∣
Xk/2 +X(k+1)/2

2
−X 2k+1

2n+1

∣∣∣∣ =
1

2

∣∣∣V 2k+1
2n+1

∣∣∣ ,

where V 2k+1
2n+1

∼ N(0, 1/2n). Thus,

△(n)(ω) =
1

2
max

0≤k≤2n+1

∣∣∣V 2k+1
2n+1

∣∣∣ .

If we can show that △(n)(ω) → 0 as n → 0, then we have demonstrated that
the {W (n)}n≥1 form a Cauchy sequence. We will show that this is true almost
surely. To do this, we use the bound on normal tail probabilities given in
theorem 3.2.3. Let Z ∼ N(0, 1) and observe

P

(
△(n) >

x/2√
2n

)
= P

(
1

2
max

0≤k≤2n/1

∣∣∣V 2k+1

2n+1

∣∣∣ > 1

2

x√
2n

)

≤ 2nP

(∣∣∣∣
1√
2n

Z

∣∣∣∣ >
x√
2n

)
≤ 2n2P

(
1√
2n

Z >
x√
2n

)

= 2n+1
P (Z >) ≤ 2n+1

√
2π

e−x2/2

x
.

Thus, for x = 2
√
n, we have

P

(
△(n) >

√
n√
2n

)
≤ 2n+1

√
2π

e−2n

2
√
n
≤ c

(
2

e2

)n

,

for some c > 0. Thus,

∞∑

n=1

P

(
△(n) >

√
n√
2n

)
≤

∞∑

n+1

c

(
2

e2

)n

< ∞.

So, by the Borel-Cantelli lemma,

P

(
△(n) >

√
n√
2n

infinitely often

)
= 0.

3.2. BROWNIAN MOTION 115

This implies that, for all sufficiently large n, △(n) ≤
√
n/2n. As a result,

with probability one,
∑∞

n=1 △(n) < ∞. Now, for m > n,

sup
0≤t≤1

∣∣∣W (n)
t −W

(m)
t

∣∣∣ ≤ △(n) + · · ·+△(m−1) → 0

asm,n → ∞. Thus, the {W (n)}n≥1 form a Cauchy sequence in C[0, 1] almost
surely, and thus their limit is continuous. Thus, we define Brownian motion
by

W =

{
limn→∞B(n) if limn→∞ W (n) exists

0 otherwise (with probability 0)
.

Of course, it remains to check that the resulting process has the desired
properties. We will leave this as an exercise for the reader. If you are
interested, take a look at [4].

3.2.2 Some useful results

It was already mentioned that Brownian motion is Markov in the section
on Gaussian Markovian processes. Brownian motion is also strong Markov.

Theorem 3.2.9. Brownian motion is Markov and strong Markov.

Proof. See [2].

Historically, Brownian motion was first conceived of as the limit of a scaled
random walk. The following theorem is a very famous result, sometimes
called a functional central limit theorem, that justifies this interpretation.

Theorem 3.2.10 (Donsker’s Theorem). Let {Xi}i≥0 be i.i.d. random vari-
ables with EX1 = 0 and EX2

1 = 1. Define the partials sums of these random
variables by

Sn = X1 + · · ·Xn.

Let

Zn(t) =
S[nt]√
n

, 0 ≤ t ≤ 1.

Then, Zn
D⇒ W , where W is a Brownian motion on [0, 1].

Proof. See [2].

116 CHAPTER 3. GAUSSIAN PROCESSES ETC.

3.2.3 Integration With Respect to Brownian Motion

Famously, Brownian motion has rougher paths than most of the deter-
ministic functions we are used to. However, it turns out that there is still
lots of order in the randomness.

Theorem 3.2.11. Brownian motion is almost surely not differentiable in
the sense that, for every 0 ≤ t ≤ 1,

P (W (ω) is not differentiable at t) = 1.

Proof. See [2].

In order to understand stochastic differential equations, we will need to
briefly discuss integration with respect to Brownian motion. The following
concepts help clarify the difficulties in defining stochastic integrals.

Definition 3.2.12 (Bounded Variation). A right continuous function has
bounded variation on the interval [0, t] if

Vf (t) = sup
k∑

j=1

|f(tj)− f(tj−1)| < ∞,

where the supremum is taken over all k ∈ N and partitions

0 = t0 ≤ t1 ≤ · · · ≤ tk−1 ≤ tk = t.

3.3 Stochastic Differential Equations

BASIC INTUITION. We will consider a special class of stochastic differ-
ential equations (SDEs) called Itô diffusions.

Definition 3.3.1 (Itô diffusion). An Itô diffusion is a process, {Xt}0≤t≤T

satisfying

Xt = X0 +

∫ t

0

a(Xu, u) du+

∫ t

0

b(Xu, u) dWu,

where {Wt}0≤T is a Bronwian motion. This equation is often written in
shorthand as

dXt = a(Xt, t) dt+ b(Xt, t) dWt.

Sometimes a(·, ·) is called the drift coefficient and b(·, ·) is called the diffusion
coefficient.

3.3. STOCHASTIC DIFFERENTIAL EQUATIONS 117

It is possible to have more general stochastic differential equations, where
a and b are functions of the whole path up until time t. In addition, stochastic
differential equations can be defined for more general classes of stochastic
processes than Brownian motion.

In settings where a and b are linear, it is possible to find “closed form”
solutions of SDEs. However, in general, SDEs need to be solved numerically.

3.3.1 Itô’s Lemma

Itô’s lemma is one of the most celebrated tools in modern mathematics.
Basically, it allows us to write out the SDE for a function of another SDE.
Sometimes, people say that it is the stochastic equivalent of the chain rule
(though this is a little confusing, as we are not really differentiating at any
point). It holds for more general processes than just Itô diffusions.

Definition 3.3.2 (Itô Process). An Itô process is a stochastic process {Xt}0≤t≤T

satisfying

Xt = X0 +

∫ t

0

µs ds+

∫ t

0

σsdWs,

where {µt}t≥0 and {σt}t≥0 are (possibly stochastic) adapted processes such

that
∫ T

0
|µs| ds < ∞ almost surely and

∫ T

0
|σs| ds < ∞ almost surely. In

shorthand, this is written as

dXt = µt dt+ σt dWt.

Note that {µt}Tt=0 and {σt}Tt=0 can be functionals of the whole path up
until time t (i.e., {Xs}ts=0). However, we will usually consider processes of
the form µt = a(Xt, t) and σt = b(Xt, t).

Lemma 3.3.3 (Itô’s Lemma). Let {Xt}Tt=0 be an Itô process given by dXt =
µt dt + σt dWt and let g(t, x) ∈ C2([0,∞) × R). Then, {Yt}Tt=0 defined by
Yt = g(t,Xt) is again an Itô process and

dYt =
∂g

∂t
(t,Xt) dt+

∂g

∂x
(t,Xt) dXt +

1

2

∂2g

∂x2
(t,Xt)(dXt)

2,

where (dXt)
2 is computed according to the rules dt dt = 0, dt dWt = dWt dt =

0 and dWt dWt = dt.

3.3.2 Numerical Solutions of SDEs

A numerical solution to an SDE is an approximate solution of the SDE
given a realization of a Brownian path, {Wt}Tt=0. Most such numerical

118 CHAPTER 3. GAUSSIAN PROCESSES ETC.

schemes are not random, in the sense that, given a realization of a Brow-
nian motion and a set of parameters, there is no randomness involved. We
will consider the two most widely used schemes, the Euler method and the
Milstein method.

The Euler Method

Consider the ordinary differential equation (ODE)

f ′ = a(f(t), t). (3.1)

This is the same as considering the stochastic differential equation

dXt = a(Xt, t)dt,

(i.e., the SDE with no stochastic coefficient). If a is a sufficiently complicated
function, this can be difficult to solve. The Euler method was first used for
deterministic differential equations like this one. We can derive it in two ways,
both of which give us intuition about how to come up with such schemes. In
the first, we can use the Taylor approximation of f around t0 to get

f(t0 + h) = f(t0) + f ′(t0)h+
1

2
f ′′(t0)h

2 +O(h3)

⇒ f(t0 + h) ≈ f(t0) + f ′(t0)h = f(t0) + a(f(t), t)h,

for small h. This means that, if we know f(t0), we know (approximately)
f(t0 + h). Thus, if we are able to start with something we know (usually
f(0)), and a partition

0 = t0 < t1 < · · · < tk = t, where tj − tj−1 = h, 1 ≤ j ≤ k,

we can successively approximate f(t) using the recursion

f̂(tj) = f̂(tj−1) + a(f̂(tj−1), tj−1)h.

Alternatively, we can integrate both sides of equation (3.1) to get

∫ t+h

0

f ′(u) du =

∫ t+h

0

a(f(t), t) du = f(t) +

∫ t+h

t

a(f(u), u) du,

which we then approximate by

f(t) +

∫ t+h

t

f(u) du ≈ f(t) + a(f(t), t)

∫ t+h

t

du = f(t) + a(f(t), t)h.

3.3. STOCHASTIC DIFFERENTIAL EQUATIONS 119

This leads to the same scheme.
The Euler approach for SDEs is more or less identical. Remember that,

by definition,
dXt = a(Xt, t) dt+ b(Xt, t) dWt,

is

Xt = X0 +

∫ t

0

a(Xu, u) du+

∫ t

0

b(Xu, u) dWu.

Thus, we can write

Xt+h = Xt +

∫ t+h

t

a(Xu, u) du+

∫ t+h

t

b(Xu, u) dWu

≈ Xt + a(Xt, t)

∫ t+h

t

du+ b(Xt, t)

∫ t+h

t

dWu

= Xt + a(Xt, t)h+ b(Xt, t) (Wt+h −Wt).

As we know that Wt+h − Wt ∼ N(0, h), this leads to the approximating
process defined recursively on the partition

0 = t0 < t1 < · · · < tk = t, where tj − tj−1 = h, 1 ≤ j ≤ k,

by X̂t0 = X0 and

X̂tj+1
= X̂tj + a(X̂tj , tj)h+ b(X̂tj , tj)

√
hZj,

where the {Zj}k−1
j=0 are i.i.d. N(0, 1).

Example 3.3.4. Consider the SDE for geometric Brownian motion. This is
given by

dXt = µXt dt+ σXt dWt.

We can simulate this using the Euler scheme as follows.

Listing 3.11: Matlab code

1 m = 10^3; h = 1/m;

2 mu = 0.1; sigma = 0.2; X_0 = 1;

3 X = zeros(1,m+1);

4 X(1) = X_0;

5 for i = 2:m+1

6 X(i) = X(i-1) + mu*X(i-1)*h + sigma*X(i-1)*sqrt(h)*randn;

7 end

8 plot(0:h:1,X)

120 CHAPTER 3. GAUSSIAN PROCESSES ETC.

Milstein’s Method

The idea of Milstein’s method is to improve on the approximation

∫ t+h

t

b(Xu, u) dWu ≈ b(Xt, t)

∫ t+h

t

dWu.

To do this, we use Itô’s lemma to get an expression for b(Xt, t) that allows
us to get a better approximation. The SDE we wish to solve is

dXt = a(Xt, t) dt+ b(Xt, t) dWt.

We set g(Xt, t) = b(Xt, t). Let bt(x, t) =
∂
∂t
b(x, t), bx(x, t) =

∂
∂x
b(Xt, t) and

bxx(x, t) =
∂2

∂x2 b(Xt, t) and use Itô’s lemma to get the expression

db(Xt, t) = bt(Xt, t) dt+ bx(Xt, t) dXt +
1

2
bxx(Xt, t)(dXt)

2

= bt(Xt, t) dt+ bx(Xt, t) [a(Xt, t) dt+ b(Xt, t) dWt]

+
1

2
bxx(Xt, t) b(Xt, t)

2 dt.

Writing this in integral form with s > t, we have

b(Xs, s) =b(Xt, t) +

∫ s

t

bt(Xu, u)du+

∫ s

t

bx(Xu, u) a(Xu, u) du

+

∫ s

t

bx(Xu, u) b(Xu, u) dWu +
1

2

∫ s

t

bxx(Xu, u) b(Xu, u)
2 du.

Thus,

∫ t+h

t

b(Xs, s) dWs =

∫ t+h

t

[
b(Xt, t) +

∫ s

t

bt(Xu, u) du+

∫ s

t

bx(Xu, u) a(Xu, u) du

+

∫ s

t

bx(Xu, u) b(Xu, u) dWu +
1

2

∫ s

t

bxx(Xu, u) b(Xu, u)
2 du

]
dWs

Disregarding all terms involving du dWs, we get that

∫ t+h

t

b(Xs, s) dWs ≈
∫ t+h

t

b(Xt, t) dWs +

∫ t+h

t

∫ s

t

bx(Xu, u) b(Xu, u) dWu dWs

≈ b(Xt, t)

∫ t+h

t

dWs + bx(Xt, t) b(Xt, t)

∫ t+h

t

∫ s

t

dWu dWs

≈ b(Xt, t)(Wt −Ws) + bx(Xt, t) b(Xt, t)
1

2

[
(Wt+h −Wt)

2 − h
]

3.3. STOCHASTIC DIFFERENTIAL EQUATIONS 121

This leads to the approximating process defined recursively on the partition

0 = t0 < t1 < · · · < tk = t, where tj − tj−1 = h, 1 ≤ j ≤ k,

by X̂t0 = X0 and

X̂tj+1
= X̂tj + a(X̂tj , tj)h+ b(X̂tj , tj)

√
hZj + bx(X̂tj , tj)b(X̂tj , tj)

h

2
(Z2

j − 1),

where the {Zj}k−1
j=0 are i.i.d. N(0, 1).

Example 3.3.5. Consider again the SDE for geometric Brownian motion.
That is,

dXt = µXt dt+ σXt dWt.

In order to simulate this using the Milstein scheme, we need to find bx(x, t).
Now, b(x, t) = σx, so bx(x, t) = σ.

Listing 3.12: Matlab code

1 m = 10^3; h = 1/m;

2 mu = 0.1; sigma = 0.2; X_0 = 1;

3 X = zeros(1,m+1);

4 X(1) = X_0;

5 for i = 2:m+1

6 Z = randn;

7 X(i) = X(i-1) + mu*X(i-1)*h + sigma*X(i-1)*sqrt(h)*Z...

8 + sigma^2 * X(i-1) * h/2 * (Z^2 - 1);

9 end

10 plot(0:h:1,X)

3.3.3 Multidimensional SDEs

Itô diffusions can also be defined in higher dimensions.

Definition 3.3.6 (Itô Diffusion (Multidimensional Version)). A multidimen-
sional Itô diffusion process is the solution of

dXt = a(Xt, t) dt+ B(Xt, t) dWt,

where Xt ∈ R
m, a(x, t) : [0, T] × R

m → R
m, B(x, t) : [0, T] × R

m+n → R
m,

and {Wt}t≥0 is an n-dimensional Brownian motion.

The Euler scheme is easily applied in multiple dimensions.

122 CHAPTER 3. GAUSSIAN PROCESSES ETC.

Example 3.3.7 (Simplified Duffing-Van der Pol Oscillator). Consider the
simplified Duffing-Van der Pol oscillator. This is given by the multidimen-
sional SDE

dXt = Ytdt

dYt =
(
Xt(α−X2

t)− Yt

)
dt+ σXtdWt.

This is easily simulated in Matlab, using an obvious extension of the Euler
scheme.

Listing 3.13: Matlab code

1 alpha = 1; sigma = 0.5;

2 m = 10^3; h = 1/m; T = 10^3;

3

4 X = zeros(T*m+1,1); Y = zeros(T*m+1,1);

5

6 X(1) = -2; Y(1) = 0;

7

8 for k = 1:T*m

9 X(k+1) = X(k) + Y(k) * h;

10 Y(k+1) = Y(k) + (X(k) * (alpha - X(k)^2) - Y(k))*h...

11 + sigma*X(k)*sqrt(h)*randn;

12 end

13

14 figure(1),plot(h:100*h:T,X(1:100:T*m))

15 figure(2),plot(h:100*h:T,Y(1:100:T*m))

16 figure(3),plot(X,Y)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Xt

Y
t

Figure 3.3.1: Plot of {Xt}t≥0 against {Yt}t≥0 for the simplified Duffing-Van
der Pol oscillator.

3.4. EXISTENCE AND UNIQUENESS RESULT 123

0 200 400 600 800 1000
−3

−2

−1

0

1

2

t

X
t

0 100 200 300 400 500 600 700 800 900 1000
−1.5

−1

−0.5

0

0.5

1

1.5

2

t

Y
t

Figure 3.3.2: Plots of {Xt}t≥0 and {Yt}t≥0 for the simplified Duffing-Van der
Pol oscillator.

3.4 Existence and Uniqueness Result

Whenever you solve a differential equation numerically, you should always
check that a solution exists first. Otherwise, you will just end up with a
bunch of garbage. There are a number of different existence and uniqueness
solutions for SDEs. The following is not the most general. However, it has
conditions that are straightforward to check. There are a number of SDEs
not covered by the following theorem. However, if you come across on of
these, you should be able to find the relevant theorem somewhere.

Theorem 3.4.1 (Existence and Uniqueness of Solutions to SDEs). Let T > 0
and let , a(x, t) : [0, T] × R

m → R
m and B(x, t) : [0, T] × R

m+n → R
m be

measurable functions satisfying

(i) |a(x, t)|+ |B(x, t)−B(y, t)| ≤ C(1+ |x|) for all x ∈ R
m and t ∈ [0, T],

where |B| =
√∑ |Bij| and C is a constant.

(ii) |a(x, t)− a(y, t)|+ |B(x, t)−B(y, t)| ≤ D|x− y| for all x,y ∈ R
m and

t ∈ [0, T] where D is a constant.

Furthermore, let Z be a random variable which is independent of the σ-
algebra F (n)

∞ generated by {Ws}s≤t and such that E|Z|2 ≤ ∞. Then, the
stochastic differential equation

dXt = a(Xt, t)dt+ B(Xt, t)dWt, 0 ≤ t ≤ T, X0 = Z,

has a unique t-continuous solution {Xt(ω)}t∈[0,T] that is adapted to the fil-
tration FZ

t generated by Z and {Ws}s≤t and

E

∫ T

0

|Xt|2 dt < ∞.

124 CHAPTER 3. GAUSSIAN PROCESSES ETC.

3.5 SDEs and PDEs

There

3.6 Error Analysis for Numerical Solutions of

SDEs

Given a realization of a Brownian motion, a numerical solution gives an
approximate solution, {X̂t}t≥0 to a specified SDE, {Xt}t≥0. This solution
will not be completely correct. However, as the step size h becomes smaller,
it should become better. In order to emphasize that a numerical solution
depends on its step size, we will write {X̂t,h}t≥0 in this section. There are a
number of different ways to measure the error of an approximate solution of
an SDE. For example, we could measure the average difference between the
true solution and numerical solution. Alternatively, we could measure the
difference in distribution between the true solution and the numerical solu-
tions. These two approaches are embodied in the notions of weak convergence
and strong convergence of numerical solutions of SDEs.

Let Cr
P be the space of r times continuously differentiable functions with

polynomial growth and polynomial growth of derivatives of order up to and
including r.

Definition 3.6.1 (Weak Convergence). We say that a numerical solution,

{X̂t,h}t≥0, converges weakly with order β > 0 to the exact solution, {Xt}t≥0,

at time T and as h ↓ 0 if, for each g ∈ C
2(β+1)
P , there exists C > 0 independent

of h and 0 < h0 < ∞ such that

∥∥∥Eg(XT)− Eg(X̂T,h)
∥∥∥ ≤ C hβ, ∀h ∈ (0, h0).

Definition 3.6.2 (Strong Convergence). We say that a numerical solution,

{X̂t,h}t≥0, converges strongly with order γ > 0 to the exact solution, {Xt}t≥0,

at time T and as h ↓ 0 if, for each g ∈ C
2(β+1)
P , there exists C > 0 independent

of h and 0 < h0 < ∞ such that

E

∥∥∥XT − X̂T,h

∥∥∥ ≤ C hγ, ∀h ∈ (0, h0).

Under some technical conditions (see, e.g., ...) the Euler scheme has weak
order convergence rate β = 1 and strong order convergence rate γ = 0.5.
Under some different technical conditions (see, e.g., ...) the Milstein scheme

3.6. ERROR ANALYSIS FOR NUMERICAL SOLUTIONS OF SDES 125

has weak order convergence rate β = 1 and strong order convergence rate
γ = 1.

In general, in Monte Carlo we are interested in estimating expectations.
This means that weak order convergence is usually the relevant convergence
concept. It is important to bear this in mind. Although the Milstein scheme
appears better, it involves calculating derivatives (sometimes these can be
done by hand in advance, but sometimes they need to be done numerically).
This imposes an additional cost which may not be worth it if strong order
convergence is not important.

Example 3.6.3. Consider the SDE for geometric Brownian motion

dXt = µXt dt+ σXt dWt.

This has the exact solution

Xt = X0 exp

{(
µ− σ2

2

)
t+ σWt

}
.

For a given realization of {Wt}t∈[0,1], we can compare the numerical solu-
tions with the exact solutions. The following code generates a realization
of Brownian motion (at a fixed number of points) and then plots the Euler
and Milstein approximations against the exact solution for a number of mesh
sizes.

Listing 3.14: Matlab code

1 L = 4; m_max = 2^L;

2 mu = 0.1; sigma = 0.2; X_0 = 1;

3

4 Z = randn(m_max,1);

5

6 for l = 1:L

7 m = 2^l; h = 1/m;

8 Z_coarse = zeros(m,1);

9 X_eul = zeros(1,m+1); X_eul(1) = X_0;

10 X_mil = zeros(1,m+1); X_mil(1) = X_0;

11 X = zeros(1,m+1); X = X_0;

12

13 for k = 1:m

14 Z_coarse(k) = 1/sqrt(2^(L-l))...

15 *sum(Z((k-1)*2^(L - l)+1:k*2^(L - l)));

16 end

17 W_coarse = sqrt(h) * cumsum(Z_coarse);

18 for i = 2:m+1

126 CHAPTER 3. GAUSSIAN PROCESSES ETC.

19 X_eul(i) = X_eul(i-1) + mu*X_eul(i-1)*h ...

20 + sigma*X_eul(i-1)*sqrt(h)*Z_coarse(i-1);

21 X_mil(i) = X_mil(i-1) + mu*X_mil(i-1)*h ...

22 + sigma*X_mil(i-1)*sqrt(h)*Z_coarse(i-1)...

23 + sigma^2 * X_mil(i-1) * h/2 * (Z_coarse(i-1)^2 - 1);

24 X(i) = X_0...

25 *exp((mu - sigma^2 / 2)*((i-1)*h) + sigma*W_coarse(i-1));

26 end

27 figure(l); hold on;

28 plot(0:h:1,X,’black’)

29 plot(0:h:1,X_eul,’red’)

30 plot(0:h:1,X_mil,’blue’)

31 legend(’Exact’,’Euler Approximation’,’Milstein Approximation’)

32 end

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Exact
Euler Approximation
Milstein Approximation

Figure 3.6.1: Plots of the exact solution, Euler approximation and Mil-
stein approximation of geometric Brownian motion for a fixed realization
of {Wt}t∈[0,1] with mesh size h = 1/2

As we have often seen, the common object of interest in Monte Carlo is
estimating ℓEf(X), where X is a random vector. In the case of SDEs, X is
often XT , the value of the solution of an SDE at time T . There are other,
more complicated, things that we might wish to estimate, such as functionals
of paths of SDEs. However, I will not focus too much on these.

If we wish to estimate ℓ = Ef(XT), we generally use the standard Monte

3.6. ERROR ANALYSIS FOR NUMERICAL SOLUTIONS OF SDES 127

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Exact
Euler Approximation
Milstein Approximation

Figure 3.6.2: Plots of the exact solution, Euler approximation and Mil-
stein approximation of geometric Brownian motion for a fixed realization
of {Wt}t∈[0,1] with mesh size h = 1/4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Exact
Euler Approximation
Milstein Approximation

Figure 3.6.3: Plots of the exact solution, Euler approximation and Mil-
stein approximation of geometric Brownian motion for a fixed realization
of {Wt}t∈[0,1] with mesh size h = 1/8

128 CHAPTER 3. GAUSSIAN PROCESSES ETC.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.2

1.4

1.6

1.8

Exact
Euler Approximation
Milstein Approximation

Figure 3.6.4: Plots of the exact solution, Euler approximation and Mil-
stein approximation of geometric Brownian motion for a fixed realization
of {Wt}t∈[0,1] with mesh size h = 1/16

Carlo estimator

ℓ̂ =
1

N

N∑

i=1

f
(
X

(i)
T,h

)
,

where X
(1)
T,h, . . . ,X

(N)
T,h are iid copies of the numerical solution of with mesh

size h. In general, this estimator is biased. This is because both the Euler
and Milstein schemes are biased. This means that we should measure its
error using MSE. Remember that the MSE of an estimator is of the form

MSE(ℓ̂) = Var(ℓ̂) + Bias(ℓ̂)2.

The two parts of the MSE correspond to different types of error: statistical

error and approximation error. The statistical error, measured by the vari-
ance, comes from the fact that there are an uncountably infinite number of
paths of Brownian motion and we are only sampling a small number. The
approximation error, measured by the bias, comes from the fact that given
a realization of a Brownian path, we still only get an approximate solution
to our SDE.

If we think a little harder, we can write the MSE as

MSE(ℓ̂) = Var(X̂T,h) +
∥∥∥Ef(XT)− Ef(X̂T,h)

∥∥∥
2

.

3.7. MULTILEVEL MONTE CARLO 129

Note that the rate at which the second term on the right goes to zero is
measured by the order of weak convergence. When the order of weak conver-
gence is 1 and for large enough N and small enough h we can approximate
the MSE by

MSE(ℓ̂) ≈ C1

N
+ C2h

2,

where C1, C2 > 0 are constants.

Remember that we defined the work done by an estimator as

work = number of samples× work to make one sample.

In our case, assuming work increases linearly in sample size and inversely in
step size, we can write

work(ℓ̂) ∝ N/h.

3.7 Multilevel Monte Carlo

Suppose we want the root mean square error (RMSE) of our estimator,

that is RMSE(ℓ̂) =
√
MSE, to be of order ǫ. Then, we need MSE = O(ǫ2).

This is true if Var(ℓ̂) = O(ǫ2) and Bias(ℓ̂) = O(ǫ2). If we are using the
Euler scheme, this means that we need N = O(ǫ2) and h = O(ǫ−1). This,
in turn, implies that the work our estimator need to do is O(ǫ3). Many
variance reduction schemes aim to reduce the cost (measured by work) of
the estimator while retaining its accuracy.

The key insight of multilevel Monte Carlo, which was introduced in [1],
is that, in some sense, most of the information about where a SDE is likely
to be at time T can be obtained by looking at the results of very coarse
approximations (i.e. numerical solutions with large values of h). Thus, a
good idea is to try to spend most of the computational effort on estimating
values using these coarse approximations.

3.7.1 The Multilevel Estimator

Consider a sequence of increasingly smaller step sizes, {h(l)}Ll=0, with
h(l) = M−lT . A common choice of M is 2. In this case, if T = 1, h(0) = 1,
h(1) = 1/2, h(2) = 1/4, h(3) = 1/8, etc.

Let P = f(XT). Then, clearly, we wish to estimate ℓ = EP . Likewise,

define P̂l = f(X̂T,h(l)). Then, a good approximation of EP is EP̂L, where L
is large (as L → ∞ this expectation should converge to the correct value).

130 CHAPTER 3. GAUSSIAN PROCESSES ETC.

Now, observe that we can write EPL as

EP̂L = EP̂0 +
L∑

l=1

(
EP̂l − EP̂l−1

)

= EP̂0 +
L∑

l=1

E(P̂l − P̂l−1)

We can estimate these using independent estimators for each summand,
which are defined by

EP̂0 ≈ Y0 =
1

N0

N0∑

i=1

f
(
X̂

(i)
T,h(0)

)

and, for l = 1, . . . , L,

E(P̂l − P̂l−1) ≈ Yl =
1

Nl

Nl∑

i=1

[
f
(
X̂

(i)
T,h(l)

)
− f

(
X̂

(i)
T,h(l−1)

)]
,

where, very importantly, X̂
(i)
T,h(l) and X̂

(i)
T,h(l−1) are generated using the same

realization of Brownian motion. Then, EP̂L can be estimated by Y (L), where

Y (L) = Y0 +
L∑

l=1

Yl.

3.7.2 Variance, Work and Optimal Sample Sizes

The variance of the estimator is given by

Var(Y (L)) = Var

(
Y0 +

L∑

l=1

Yl

)
=

L∑

l=0

Vl

Nl

,

where V0 = Var(f(X̂T,h(0))) and, for l = 1, . . . , L,

Vl = Var
(
f(X̂T,h(l))− f(X̂T,h(l−1))

)
.

We can write work done by this estimator in terms of the various sample
sizes and step sizes as

work(Y (L)) ∝
L∑

l=0

Nl

hl

.

3.7. MULTILEVEL MONTE CARLO 131

Taking a fixed work budget, proportional to W , and assuming that we do not
need integer sample sizes (rounding afterwards should more or less preserve
optimality), we can find the optimal sample sizes using standard calculus.
We solve

∇N

(
L∑

l=0

Vl

Nl

+ λ

(
L∑

l=0

Nl

hl

−W

))
= 0

to get

Nl =

√
Vlhl

λ
∝
√

Vlhl.

3.7.3 A Rough Sketch of Why Multilevel Monte Carlo
Works

If we use the Euler scheme, we have that, as h → 0,

E

[
P̂l − P

]
= O(hl),

as this is measured using weak convergence. Likewise, we have

E

∥∥∥XT − X̂T,h(l)

∥∥∥ = O(h1/2) → E

∥∥∥XT − X̂T,h(l)

∥∥∥
2

= O(h)

by strong convergence. We will assume f is Lipschitz, which means that
there exists C > 0 such that

‖f(x)− f(y)‖ ≤ C ‖x− y‖ ,

for all x and y in the domain of f . This is a very strong assumption, which is
relaxed in the general theorem. However, it makes the calculations relatively
straightforward. Now, observe that

Var
(
P̂l − P

)
= E

(
P̂l − P

)2
−
(
EP̂l − P

)2
≤ E

(
P̂l − P

)2

= E

∥∥∥f(X̂T,h(l))− f(XT)
∥∥∥
2

≤ C
∥∥∥X̂T,h(l) −XT

∥∥∥
2

= O(hl).

We can obtain an upper bound on the variance of P̂l − P̂l−1 by writing

P̂l − P̂l−1 =
(
P̂l − P

)
+
(
P − P̂l−1

)

and observing that

Var
(
P̂l − P̂l−1

)
≤
(√

Var
(
P̂l − P

)
+

√
Var

(
P − P̂l−1

))2

= O(hl)

132 CHAPTER 3. GAUSSIAN PROCESSES ETC.

Now, choosing Nl = O(ǫ−2Lhl) we get

Var(Y (L)) =
L∑

l=0

Vl

Nl

=
L∑

l=1

O(hl)

O(ǫ−2Lhl)
= O(ǫ−2).

If we then choose

L =
log ǫ−1

logM
+O(1)

as ǫ → 0, then hL = O(ǫ). This implies that we have MSE = O(ǫ2) with

work ∝
L∑

l=0

Nl

hl

=
L∑

l=0

O(ǫ−2Lhl)

hl

= O(ǫ−2L2) = O(ǫ−2(log ǫ)2),

which is better than standard Monte Carlo.

3.7.4 The Key Theorem

The following theorem, first established in [1], gives quite general re-
sults under which the multilevel approach works well. For more details,
extensions, and other applications, take a look at Mike Giles’ website (go to
http://people.maths.ox.ac.uk/~gilesm/).

Theorem 3.7.1. Let P denote a functional of the solution of

dXt = a(Xt, t) dt+ b(Xt, t) dWt,

for a given Brownian path {Wt}t≥0 and let P̂l denote the corresponding ap-
proximation using a numerical discretization with timestep h(l) = M−lT . If

there exist independent estimators Ŷl based on Nl Monte Carlo samples and
positive constants α ≥ 1/2, β, c1, c2, c3 such that

(i) E[P̂l − P] ≤ c1h
α
l ,

(ii) EŶl =

{
EP̂0, l = 0,

E[P̂l − P̂l−1], l > 0,

(iii) Var(Ŷl) ≤ c2N
−1
l hβ

l ,

(iv) Cl, the computational complexity of Ŷl is bounded by

Cl ≤ c3Nlh
−1
l ,

http://people.maths.ox.ac.uk/~gilesm/

3.7. MULTILEVEL MONTE CARLO 133

then there exists a positive constant c4 such that for any ǫ > e−1, there are
values L and Nl for which the multilevel estimator

Ŷ =
L∑

l=0

Ŷl

has an MSE with bound
MSE < ǫ2,

with computational complexity C with bound

C ≤

c4ǫ
−2, β > 1,

c4ǫ
−2(log ǫ)2, β = 1,

c4ǫ
−2−(1−β)/α, 0 < β < 1.

Proof. See [1]

3.7.5 Implementation

Listing 3.15: Matlab code

1 mu = 0.1; sigma = 0.05;

2 X_0 = 1; L = 6; Y = zeros(L,1);

3

4 N_0 = 10^(L+1); N = zeros(L,1);

5

6 for l = 1:L

7 N(l) = 10^(L+1-l);

8 end

9

10 m = 1; h = 1;

11 vals = zeros(N_0,1);

12

13 for i = 1:N_0

14 X = X_0;

15 for k = 1:m

16 X = X + mu*X*h + sigma*X*sqrt(h)*randn;

17 end

18 vals(i) = X;

19 end

20

21 Y_0 = mean(vals);

22

134 CHAPTER 3. GAUSSIAN PROCESSES ETC.

23 for l = 1:L

24 m_old = 2^(l-1); h_old = 1/m_old;

25 m_new = 2^l; h_new = 1/m_new;

26 vals = zeros(N(l),1);

27

28 for i = 1:N(l)

29 X_old = X_0; X_new = X_0;

30 for k = 1:m_old

31 Z_1 = sqrt(h_new)*randn; Z_2 = sqrt(h_new)*randn;

32 Z = Z_1 + Z_2;

33 X_old = X_old + mu*X_old*h_old + sigma*X_old*Z;

34 X_new = X_new + mu*X_new*h_new + sigma*X_new*Z_1;

35 X_new = X_new + mu*X_new*h_new + sigma*X_new*Z_2;

36 end

37 vals(i) = X_new - X_old;

38 end

39

40 Y(l) = mean(vals);

41 end

42

43 Y_0 + sum(Y)

Chapter 4

Spatial Processes

4.1 Random Fields

At the beginning of these notes we defined a stochastic process as a set
of random variables {Xi}i∈I taking values in a state space X with index
set I ⊂ R. It seems natural to ask what would happen if we took I to be
something “larger” than a subset of R — for example, a subset of RN . Such
generalizations are called random fields. Intuitively, we can think of them
as stochastic processes evolving over space instead of time. Sometimes, they
can be thought of as spatial processes that are also evolving over time (for
example, if I = [a, b]3 × [0, T]).

Definition 4.1.1 (Random Field). Let I ⊂ R
N and {Xi}i∈I be a set of d-

dimensional random vectors indexed by I. We say {Xi}i∈I is a (N, d) random
field.

Note that stochastic processes are random fields.

4.1.1 Gaussian Random Fields

Some of the simplest random fields to work with are Gaussian random

fields. These are a natural extension of our definition of Gaussian processes.

Definition 4.1.2. A random field {Xi}i∈I is a Gaussian random field if
(Xi1 , . . . , Xin) has a multivariate normal distribution for all 1 ≤ n < ∞ and
(i1, . . . , in) ∈ In.

As with Gaussian processes, we can describe the finite dimensional dis-
tributions of Gaussian random fields using a mean function µ(i) = EXi and
a covariance function r(i, j) = Cov(Xi, Xj). If we wish to consider the Gaus-
sian random field at a finite number of points, we can treat its values as a

135

136 CHAPTER 4. SPATIAL PROCESSES

random vector. We can use the mean function and covariance function to
construct the mean vector, µ, and covariance matrix, Σ, of these points.

Using these functions, and treating a finite number of points of the ran-
dom field as a vector, we can generate a realization of the field

Example 4.1.3 (Gaussian White Noise). A trivial example of a Gaussian
random field is Gaussian white noise. On I = {1, . . . ,m} × {1, . . . ,m}, this
is the process, {Xi}i∈I with mean function

µ(i) = EXi = 0,

and covariance function

r(i, j) = r((xi, yi), (xj, yj)) = Cov(X(xi,yi), X(xj ,yj)) =

{
1 if (xi, yi) = (xj, yj)

0 otherwise
.

We can simulate this in Matlab by simple generating a matrix of standard

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Figure 4.1.1: A realization of Gaussian white noise

normal random variables.

Listing 4.1: Matlab code

1 m = 100;

2 Z = randn(m,m);

3 imagesc(Z);

4 colormap(gray);

4.1. RANDOM FIELDS 137

Example 4.1.4 (Brownian Sheet). The Brownian sheet, {W(x,y)}(x,y)∈[0,1]2 is
a natural random field extension of Brownian motion on [0, 1]. It has mean
function

µ(i) = EXi = 0,

and covariance function

r(i, j) = r((xi, yi), (xj, yj)) = Cov(W(xi,yi),W(xj ,yj)) = min(xi, xj)min(yi, yj).

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−0.5

0

0.5

1

1.5

2

Figure 4.1.2: A realization of a Brownian sheet

We can easily simulate this in Matlab.

Listing 4.2: Matlab code

1 alpha = 1.5; x = .01:.01:1; y = .01:.01:1;

2

3 n1 = length(x); n2 = length(y);

4

5 Sigma = zeros(n1*n2,n1*n2);

6

7 for i = 1:n2

8 for j = 1:n1

9 row_state = (i-1)*n2 + j;

10 for k = 1:n2

11 for l = 1:n1

12 column_state = (k-1)*n2 + l;

13 Sigma(row_state,column_state) = ...

138 CHAPTER 4. SPATIAL PROCESSES

14 min(x(j),x(l))*min(y(i),y(k));

15 end

16 end

17 end

18 end

19

20 A = chol(Sigma);

21 Y = randn(1,n1*n2) * A;

22

23 X = zeros(n1,n2);

24

25 for i = 1:n2

26 for j = 1:n1

27 X(i,j) = Y((i-1)*n2 + j);

28 end

29 end

30

31 surf(x,y,X)

Random fields are, in general, difficult to work with. For that reason, it
is nice to identify classes of random fields that are more tractable.

Definition 4.1.5 (Stationarity). We say a random field, {Xi}i∈I , is station-
ary if (Xi1 , . . . , Xin) has the same distribtion as (Xi1+s, . . . , Xin+s) for all
n ≥ 1, (i1, . . . , in) ∈ In and s ∈ I.

Weak stationary implies that the first two moments of the distributions
do not change.

Definition 4.1.6 (Wide sense (weak) stationarity). A random field, {Xi}i∈I
is wide-sense stationary if µ(i) = c for all i ∈ I and r(i, j) = r(|i− j|). That
is, the covariance function is simply a function of the displacement vector
between the points i and j.

Analogously to the case of Gaussian processes, Gaussian fields are station-
ary if they are weak stationary. When considering random fields, a different
type of invariance property is also useful. This is called isotropy. Basically,
this means the distribution of the object does not change when the object is
rotated. We will only consider a very special case of isotropy.

Definition 4.1.7 (Stationary wide sense isotropy). A stationary random
field is wide sense isotropic if r(i, j) = r(‖i − j‖). That is, the covariance
between points i and j only depends on the distance between them.

Note that non-stationary random fields can be isotropic.

4.1. RANDOM FIELDS 139

4.1.2 Markov Random Fields

When considering stochastic processes, the Markov property simplified
things considerably. Markov random fields are the random field analogues of
Markov stochastic processes. To define a meaningful version of the Markov
property, we exploit the idea of conditional independence.

Definition 4.1.8 (Conditional Independence for Events). We say two events
A and B are said to be conditionally independent given C if

P(A ∩ B |C) = P(A |C)P(B |C).

Clearly, a Markov process is conditional independent of its past given its
present.

Definition 4.1.9 (Conditional Independence for Random Variables). We
can easily extend this definition to random vectors X,Y and Z with joint
density π(x,y, z). We say X and Y are conditionally independent given Z
(denoted x⊥y | z) if

π(x,y | z) = π(x | z)π(y | z).
There is a nice criterion for determining conditional independence given

a joint density.

Theorem 4.1.10 (Factorization Theorem). Given random vectors X,Y and
Z with joint density π(x,y, z), we say x⊥y | z if and only if

π(x,y, z) = f(x, z)g(y, z)

for some functions f and g and all z with π(z) > 0.

Example 4.1.11. Take

π(x, y, z) ∝ exp{x+ xz + yz}
on some bounded region. We can write

π(x, y, z) ∝ exp{x+ xz}exp{yz} = f(x, z)g(y, z)

so x⊥y | z.
Example 4.1.12. Take

π(x, y, z) ∝ exp{xyz}
on some bounded region. We cannot factorize this into a function of x and
z and a function of y and z, so x and y are not conditionally independent
given z here.

140 CHAPTER 4. SPATIAL PROCESSES

We can represent conditional dependence relations using graphs called
graphical models.

Example 4.1.13.

PICTURE HERE

This example encodes the dependency structure

π(a, b, c, d) = π(a)π(b)π(c | b, d)π(d | a, b, c).

Markov random fields depict a specific dependency structure using undi-
rected graphs G = (V,E). Alternatively, you can think of these as graphs
with arrows on both ends of the edges.

PICTURE HERE

In Markov random fields, random variables are conditionally independent
of the rest of the graph given their immediate neighbors.

Definition 4.1.14 (Neighbors of a Vertex). The neighbors of the vertex i
are the members of the set

Ni = {j ∈ V : (i, j) ∈ E}.

For example, in the graph above, N1 = {2, 3}, N2 = {1, 3, 4}, N3 =
{1, 2, 4} and N4 = {2, 3}.

We can now define a Markov random field. It will be convenient to use
to following notation. For C ⊂ V , let XC = {Xi : i ∈ C} and X−C = {Xi :
i ∈ V \ C}.

Definition 4.1.15 (Markov Random Field). We say a sequence of random
variables, X = {Xi}i∈V , indexed by the vertices of G = (V,E), is a Markov
random field if Xi |X−{i} has the same distribution as Xi |XNi

for all i ∈ V .

4.1.3 Gaussian Random Markov Fields

We will consider a special class of Markov random fields, called Gaussian

random Markov fields.

Definition 4.1.16 (Gaussian Random Markov Field). A Gaussian random
Markov field (GRMF) is a Markov random field which is also a Gaussian
field.

4.1. RANDOM FIELDS 141

0
10

20
30

40
50

0

20

40

60
−5

0

5

10

Figure 4.1.3: A realization of a Gaussian Markov random field on a 50× 50
lattice

We will assume that the GRMFs we consider have densities. That is,
the covariance matrix of a finite number of points, Σ, will always be positive
definite. Recall that the pdf of a normal vector X is given by

f(x;µ,Σ) = (2π)−n/2 |Σ|−1/2 exp

{
−1

2
(x− µ)⊺Σ−1(x− µ)

}
.

In general, the covariance matrix is a natural object to consider when
talking about Gaussian processes and fields. However, in the case of Gaussian
random fields, it turns out that the precision matrix is a more natural object
to work with.

Definition 4.1.17 (Precision Matrix). The precision matrix, Q, of a covari-
ance matrix, Σ, is its inverse. That is,

Q = Σ−1.

We can rewrite the pdf of a normal vector in terms of its precision matrix
as

f(x;µ, Q) = (2π)−n/2 |Q|1/2 exp
{
−1

2
(x− µ)⊺Q(x− µ)

}
.

The following result reveals the reason why precision matrices are so
appealing when working with GRMFs.

142 CHAPTER 4. SPATIAL PROCESSES

Theorem 4.1.18. Let X be normally distributed with mean µ and precision
matrix Q. Then, for i 6= j,

Xi⊥Xj |X−{i,j} ⇐⇒ Qi,j = 0.

Proof. Assume without loss of generality that µ = 0. We have

π(x) ∝ exp

{
−1

2
x⊺Qx

}
= exp

{
−1

2

∑

l∈V

∑

k∈V

xkQk,lxl

}

= exp

−1

2
xixj(Qi,j +Qj,i)−

1

2

∑

{k,l}6={i,j}

xkQk,lxl

If you consider examples 4.1.12 and 4.1.13, then it is clear that this pdf can
only be factorized in the necessary way if Qi,j = Qj,i = 0.

Theorem 4.1.19. Let X be a GRMF with respect to G = (V,E) with mean
µ and precision matrix Q. Then,

(i) E [Xi |X−i] = µi − 1
Qi,i

∑
j∈Ni

Qi,j(Xj − µj).

(ii) Prec(Xi |X−{i}) = Qii.

(iii) Corr(Xi, Xj |Xi,j) =
−Qi,j√
Qi,iQj,j

.

Theorem 4.1.20. Let X be a GRMF with respect to G = (V,E). Then,
the following are equivalent:

(i) The pairwise Markov property

Xi⊥Xj |X−{i,j} (i, j) /∈ E, i 6= j.

(ii) The local Markov property

Xi⊥X−{i}∪Ni
|XNi

∀i ∈ V.

(iii) The global Markov property

XA⊥XB |XC

for all disjoint A,B and C, where C separates A and B.

4.1. RANDOM FIELDS 143

GRMFs are very appealing from a computational perspective as the pre-
cision matrix Q is sparse (that is, it is mostly zeros). In general, matrix
operations are much faster for sparse matrices. In addition, far less memory
is required in order to store sparse matrices.

Remember that the inverse of a SPD matrix is also SPD. This implies
that Q has a Cholesky decomposition. We can use this to generate normal
random vectors with the desired distributions.

Theorem 4.1.21. Given a SPD covariance matrix Σ and a vector µ, the
random vector

X = µ+ (C⊺)−1 Z ∼ N(µ,Σ),

where C is such that Σ−1 = Q = CC⊺ and Z ∼ N(0, I).

Proof. We know X is multivariate normal, so we just need to check that it
has the correct mean and variance. Now,

E
[
µ+ (C⊺)−1 Z

]
= µ+ (C⊺)−1

EZ = µ,

and

Var
(
µ+ (C⊺)−1 Z

)
= (C⊺)−1 Var(Z) (C)−1 = (CC⊺)−1 = Q−1 = Σ.

Example 4.1.22 (A Gaussian random Markov field on a Lattice). We sim-
ulate a zero mean GRMF on the 200 × 200 square lattice with Qi,i = 1
and

Qi,j =

{
−0.25 if (i, j) ∈ E

0 otherwise
.

Listing 4.3: Matlab code

1 m = 200; d1 = 1; d2 = -0.25;

2 nels = m*(5*m-4);

3

4 a = zeros(1, nels); b = zeros(1,nels); q = zeros(1,nels);

5 %compute the links and weights for the precision matrix

6 k=0;

7 for i=1:m

8 for j=1:m

9 A = findneigh(i,j,m);

10 number_neighbours = size(A,1);

11 for h=1:number_neighbours

12 a(k+h)= ij2k(i,j,m);

144 CHAPTER 4. SPATIAL PROCESSES

13 b(k+h)= ij2k(A(h,1),A(h,2),m);

14 if h==1

15 q(k+h) = d1;

16 else

17 q(k+h) = d2;

18 end

19 end

20 k = k+number_neighbours;

21 end

22 end

23 %construct the precision matrix

24 Q = sparse(a,b,q,m^2,m^2);

25 %calculate the Cholesky matrix

26 C = chol(Q,’lower’);

27 Z = randn(m^2,1);

28 % generate the Gaussian process

29 x = C\Z;

30 colormap gray, brighten(-0.2)

31 imagesc(reshape(x,m,m)) % plot the result

This uses the following functions.

Listing 4.4: Matlab code

1 function A = findneigh(i,j,m)

2 % find neighbors of the (i,j)-th site of an m by m square lattice

3 if i==1

4 if j==1

5 A = [1,1;1,2;2,1];

6 elseif j==m

7 A = [1,m;1,m-1;2,m];

8 else

9 A = [1,j;1,j-1;1,j+1;2,j];

10 end

11 elseif i==m

12 if j==1

13 A = [m,1;m,2;m-1,1];

14 elseif j==m

15 A = [m,m;m,m-1;m-1,m];

16 else

17 A = [m,j;m,j-1;m,j+1;m-1,j];

18 end

19 else

20 if j==1

21 A = [i,1;i,2;i-1,1;i+1,1];

4.2. SPATIAL POISSON PROCESSES 145

22 elseif j==m

23 A = [i,m;i,m-1;i+1,m;i-1,m];

24 else

25 A = [i,j;i,j-1;i,j+1;i+1,j;i-1,j];

26 end

27 end

28 end

Listing 4.5: Matlab code

1 function k = ij2k(i,j,m)

2 k = (i-1)*m + j;

20 40 60 80 100 120 140 160 180 200

50

100

150

200

Figure 4.1.4: A realization of the random field

4.2 Spatial Poisson Processes

We want to extend the notion of a Poisson process, which we have already
discussed in 1 dimension, to higher dimensions. Remember, we defined this
process in three equivalent ways: the arrival times, the inter-arrival times,
and the counting process {Nt}t≥0. It no longer makes sense to think about
inter-arrival times, but if we think of the arrival times as positions in space
(on the 1D line) then it is clear that we can possibly extend this definition to
space. As it turns out, however, the counting function definition is in some
sense the nicest method of extending the Poisson process to space.

146 CHAPTER 4. SPATIAL PROCESSES

Think of the function N([a, b]) = Nb −Na. This measures the number of
points in the bounded set [a, b]. Such a measure is called a counting measure.
If we know the locations of the points, it is easy to construct this function.
Conversely, if we know the function we can find the location of the points.

In the following, we will use νd to denote d-dimensional Lebesgue measure.

4.2.1 Binomial Process

Consider a bounded windowW ⊂ R
d with a single point placed uniformly

in it. The location of this point, x, has the probability density

f(x) =

{
1

νd(W)
if x ∈ W

0 otherwise
.

If we consider a bounded set B ⊂ R
d, then, for X, the point we randomly

threw into W , we have

P(X ∈ B) =

∫

B

f(x) dx =
νd(B ∩W)

νd(W)
.

If we throw n points into W , then we have a binomial process.

Definition 4.2.1. A binomial point process of n points is a process of n
independent points, X1, . . . ,Xn, uniformly distributed in the bounded set
W .

If we consider N(B), the number of points in some bounded set B, then
this can be written as

N(B) =
n∑

i=1

I(Xi ∈ B).

It is straightforward to see that N(B) has a binomial distribution. Specifi-
cally, N(B) ∼ Bin(n, p), where p = P(X ∈ B), defined above.

It is straightforward to generate a binomial process. The only difficulty
lies in generating points uniformly in the set W . This is primarily difficult in
high dimensions but, in practice, may not be such an issue as the dimension
of a point process is usually quite low.

Here is an example in two dimensions.

Listing 4.6: Matlab code

1 n = 20; dims = [0 10; 0 10];

2

4.2. SPATIAL POISSON PROCESSES 147

3 X = zeros(n,2);

4

5 X(:,1) = (dims(1,2) - dims(1,1)) * rand(n,1);

6 X(:,2) = (dims(2,2) - dims(2,1)) * rand(n,1);

7

8 S = 200 * ones(n,1);

9 scatter(X(:,1),X(:,2),S,’fill’)

Here is an example in three dimensions.

Listing 4.7: Matlab code

1 n = 20; dims = [0 10; 0 10; 0 10];

2

3 X = zeros(n,3);

4

5 X(:,1) = (dims(1,2) - dims(1,1)) * rand(n,1);

6 X(:,2) = (dims(2,2) - dims(2,1)) * rand(n,1);

7 X(:,3) = (dims(3,2) - dims(3,1)) * rand(n,1);

8

9 S = 200 * ones(n,1);

10 scatter3(X(:,1),X(:,2),X(:,3),S,’fill’)

0 2 4 6 8 10
0

2

4

6

8

10

Figure 4.2.1: A realization of a binomial process on [0, 10] × [0, 10] with
n = 20 points.

148 CHAPTER 4. SPATIAL PROCESSES

0
2

4
6

8
10

0

5

10
0

2

4

6

8

10

Figure 4.2.2: A realization of a binomial process on [0, 10] × [0, 10] × [0, 10]
with n = 20 points.

4.2.2 Spatial Point Processes

As stated above, we define spatial point processes in terms of counting
measures, specifically random counting measures.

Definition 4.2.2 (Locally Finite Counting Measure). Let N be the family
of locally finite counting measures ϕ : B(Rd) → {0, 1, . . .} ∪ {∞}. That is,

ϕ

(
∞⋃

n=1

Bn

)
=

∞∑

n=1

ϕ(Bn)

for pairwise disjoint B1, B2, . . . ∈ B(Rd), and ϕ(B) < ∞ for all bounded
B ∈ B(Rd).

Let N be the smallest σ-algebra on N such that ϕ → ϕ(B) is (N ,B(Rd))-
measurable for all bounded B ∈ B(Rd).

Definition 4.2.3 (Random Counting Measure). A random counting measure

N : Ω → N is a measurable mapping of the probability space (Ω,F ,P) into
(N,N). Intuitively, it is a random element of N.

Poisson Process

Definition 4.2.4 (Poisson Random Measure). Let B0(R
d) be the collection

of bounded Borel sets in R
d and µ : B(Rd) → [0,∞] a locally finite measure

4.2. SPATIAL POISSON PROCESSES 149

(i.e., µ(B) < ∞ for all B ∈ B0(R
d)). We say {NB}B∈B(Rd) is a Poisson

random measure with intensity measure µ if

(i) NB1 , NB2 , . . . are independent random variables for pairwise disjoint
B1, B2 . . . ∈ B0(R

d).

(ii) NB ∼ Poi(µ(B)) for all B ∈ B0(R
d).

If µ is proportion to νd (i.e., µ(B) = λνd(B) for all B ∈ B(Rd)), then
{NB}B∈B(Rd) is said to be a homogenous Poisson counting measure with in-
tensity λ.

Lemma 4.2.5. Consider a Poisson point process in R
d with constant inten-

sity λ > 0. Let W ⊂ R
d be a region with 0 < νd(W) < ∞. Given N(W) = n,

the conditional distribution of N(B) for B ⊆ W is binomial, with

P(N(B) = k |N(W) = n) =

(
n

k

)
pk(1− p)n−k,

where p = νd(B)/νd(W). Furthermore, the conditional joint distribution of
N(B1), . . . , N(Bn) for any B1, . . . , Bn ⊂ W is the same as the joint distribu-
tion of these random variables for a binomial process.

Proof. Let 0 ≤ k ≤ n. Then

P(N(B) = k |N(W) = n) =
P(N(B) = k,N(W) = n)

P(N(W) = n)

=
P(N(B) = k,N(W \B) = n− k)

P(N(W) = n)

=
P(N(B) = k)P(N(W \B) = n− k)

P(N(W) = n)

=
e−λνd(B) (λνd(B))k

k!
e−λνd(W\B) (λνd(W\B))n−k

(n−k)!

e−λνd(W) (λνd(W))n

n!

=

(
n

k

)(
νd(B)

νd(B)

)k (
1− νd(B)

νd(B)

)n−k

.

Lemma 4.2.5 suggests that we can simulate a homogenous Poisson pro-
cess on W be generating N(W) ∼ Poi(λνd(W)), then simulating a binomial
process with N(W) points.

150 CHAPTER 4. SPATIAL PROCESSES

Example 4.2.6. Consider a homogenous Poisson process on W = {(x, y) :
x2 + y2 ≤ 1} with λ = 100. We can simulate this as follows.

Listing 4.8: Matlab code

1 lambda = 100; N = poissrnd(lambda * pi);

2 X = zeros(N,2); count = 1;

3

4 while count <= N

5 x = 2*rand - 1; y = 2 * rand - 1;

6 if (x^2 + y^2) <= 1

7 X(count,1) = x;

8 X(count,2) = y;

9 count = count + 1;

10 end

11 end

12

13 S = 200 * ones(N,1);

14 scatter(X(:,1),X(:,2),S,’fill’)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 4.2.3: A realization of a Poisson process with constant intensity λ =
100 on W = {(x, y) : x2 + y2 ≤ 1}.

Inhomogeneous Poisson Processes

Inhomogeneous Poisson processes (i.e. processes where it is not true that
µ(B) = λνd(B) for all B ∈ B(Rd)) are at little more challenging to simulate

4.2. SPATIAL POISSON PROCESSES 151

and work with than homogeneous Poisson processes. We will restrict our
attention to processes with measures that are absolutely continuous with
respect to d-dimensional Lebesgue measure. For such processes, there exists
a Borel measurable function λ : Rd → [0,∞) such that

µ(B) =

∫

B

λ(x) dx

for all B ∈ B(Rd). This function is called the intensity function of the process
{NB}B∈B(Rd).

Theorem 4.2.7. Let λ1, λ2 : Rd → [0,∞) be two Borel measurable and
locally integrable functions such that

λ1(x) > λ2(x)

for all x ∈ R
d. Let {Sn} be a measurable indexing of the atoms of a Poisson

process with intensity function λ1 and let {Un} be a sequence of i.i.d. uniform
random variables. Then, the random counting measure {ÑB}B∈B(Rd) with

ÑB = #{n : Sn ∈ B,Un ≤ λ2(Sn)/λ1(Sn)}

for all B ∈ B(Rd), is a Poisson process with intensity function λ2.

Example 4.2.8 (Inhomogeneous Poisson Process). Consider an inhomo-
geneous Poisson process with intensity µ(x, y) = 20

(
sin2(x) + cos2(y)

)
on

W = [0, 5] × [0, 5]. We have max(x,y)∈W 20
(
sin2(x) + cos2(y)

)
= 40, so

λ∗ = 40.

Listing 4.9: Matlab code

1 lambda_star = 40;

2 N_star = poissrnd(lambda_star * (5 * 5));

3 X = [];

4

5 for i = 1:N_star

6 x = 5 * rand; y = 5 * rand;

7 if rand < (20*(sin(x)^2 + cos(y)^2) / lambda_star)

8 X = [X; x y];

9 end

10 end

11

12 x = 0 : .1 : 5; y = 0 : .1 : 5;

13 n = length(x); Z = zeros(n,n);

14

152 CHAPTER 4. SPATIAL PROCESSES

15 for i = 1:n

16 for j = 1:n

17 Z(j,i) = 20*(sin(x(i))^2 + cos(y(j))^2);

18 end

19 end

20

21 surf(x,y,Z);

22 hold on

23 colormap hot

24 S = 100 * ones(length(X),1);

25 scatter(X(:,1),X(:,2),S,’fill’)

Cox Process

A Cox process is a natural extension of a Poisson process where the
deterministic instensity measure is replaced by a random measure.

Definition 4.2.9 (Cox Process). Let {ΛB}B∈B(Rd) be a random measure that
is locally finite with probability 1. The family of random counting measures
{NB}B∈B(Rd) is called a Cox process with random intensity Λ if

P

(
n⋂

i=1

{NBi
= ki}

)
= E

[
n∏

i=1

Λki
Bi

ki!
exp{−ΛBi

}
]
.

Example 4.2.10 (Cox Process). Consider a Cox process with

Listing 4.10: Matlab code

1 x = .01:.01:1; y = .01:.01:1;

2 n1 = length(x); n2 = length(y);

3 Sigma = zeros(n1*n2,n1*n2);

4

5 for i = 1:n2

6 for j = 1:n1

7 row_state = (i-1)*n2 + j;

8 for k = 1:n2

9 for l = 1:n1

10 column_state = (k-1)*n2 + l;

11 Sigma(row_state,column_state) = ...

12 min(x(j),x(l))*min(y(i),y(k));

13 end

14 end

4.2. SPATIAL POISSON PROCESSES 153

0 1 2 3 4 5
0

1

2

3

4

5

0
1

2
3

4
5

0

2

4

6
0

10

20

30

40

Figure 4.2.4: Realizations of an inhomogenous Poisson process with intensity
µ(x, y) = 20

(
sin2(x) + cos2(y)

)
on W = [0, 5]× [0, 5].

154 CHAPTER 4. SPATIAL PROCESSES

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.5

1 0 0.2 0.4 0.6 0.8 1

0

200

400

600

800

1000

Figure 4.2.5: Realizations of an inhomogenous Poisson process with intensity
µ(x, y) = 20

(
sin2(x) + cos2(y)

)
on W = [0, 5]× [0, 5].

4.2. SPATIAL POISSON PROCESSES 155

15 end

16 end

17

18 A = chol(Sigma); Y = randn(1,n1*n2) * A;

19 Lambda = reshape(300*Y.^2,n1,n2);

20 lambda_star = max(max(Lambda));

21 N = poissrnd(lambda_star)

22 X = [];

23

24 for i = 1:N

25 x_temp = rand;

26 y_temp = rand;

27 ix = ceil(100 * x_temp);

28 iy = ceil(100 * y_temp);

29

30 if rand < (Lambda(iy,ix) / lambda_star)

31 X = [X; x_temp y_temp];

32 end

33 end

34

35 contour(x,y,Lambda)

36 hold on

37 S = 100 * ones(length(X),1);

38 scatter(X(:,1),X(:,2),S,’fill’)

39 colormap hot

156 CHAPTER 4. SPATIAL PROCESSES

Bibliography

[1] M. B. Giles. Multilevel monte carlo path simulation. Operations Research,
56(3):607–617, 2008.

[2] T. M. Liggett. Continuous Time Markov Processes: An Introduction.
American Maths Society, Providence, 2010.

[3] J. Norris. Markov Chains. Cambridge University Press, Cambridge, 1997.

[4] S. I. Resnick. Adventures in Stochastic Processes. Birkhäuser, Boston,
1992.

157

