Stochastik I - Übungsblatt 3

Abgabe am 20. 05. vor Beginn der Übung

Aufgabe 1 (8 Punkte)

Sei $(X_1, ..., X_n)$ eine Zufallsstichprobe mit $X_1 \sim \operatorname{Exp}(\lambda)$. Bestimme die Verteilung von \overline{X}_n , sowie den Erwartungswert und die Varianz von \overline{X}_n und S_n^2 .

Aufgabe 2 (3+2+3 Punkte)

Für eine reellwertige Zufallsvariable X und $\alpha \in (0,1)$ ist das α -Quantil q_{α} von X definiert als der Wert, für den $P(X \le q_{\alpha}) = \alpha$. Wir bezeichnen mit z_{α} bzw. $\chi^2_{r,\alpha}$ die α -Quantile der Standardnormalverteilung bzw. der χ^2 -Verteilung mit r Freiheitsgraden.

- (a) Zeige, dass $\lim_{r\to\infty} \frac{\chi_{r,\alpha}^2 r}{\sqrt{2r}} = z_{\alpha}$.
- (b) Nimm an du kennst z_{α} für alle $\alpha \in (0, 1)$. Gib eine Näherungsformel zur Berechnung von $\chi^2_{r,\alpha}$ an und berechne damit $\chi^2_{100,0.05}$
- (c) Es sei $Q_r:(0,1)\to\mathbb{R}$ mit $Q_r(\alpha)=\chi^2_{r,\alpha}$ die Quantilfunktion der χ^2 -Verteilung mit r Freiheitsgraden. Schreibe eine Funktion in \mathbf{R} die $Q_r(\cdot)$ approximativ laut Aufgabe (b) berechnet (die Anzahl r der Freiheitsgrade sollte der Funktion übergeben werden). Plotte die Funktion für r=30 zusammen mit der exakten Quantilfunktion (Hinweis: qchisq) in unterschiedlichen Farben in eine gemeinsame Abbildung.

Aufgabe 3 (4,5+2,5+2 Punkte)

Sei V_r eine t_r -verteilte Zufallsvariable.

- (a) Berechne den Erwartungswert von V_r für r > 1 und die Varianz von V_r für r > 2. Hinweis: $\int_0^\infty x^p e^{-x/2} dx < \infty$ für p > -1.
- (b) Überprüfe, ob für r = 1 der Erwartungswert von V_r ebenfalls berechnet werden kann.
- (c) Plotte die Dichte f_r von V_r für r = 1, 2, 4 (in unterschiedlichen Farben) sowie die Dichte der Standardnormalverteilung (gestrichelt) in eine gemeinsame Grafik.

Aufgabe 4 (3 Punkte)

Sei $(X_1, ..., X_n)$ eine normalverteilte Zufallsstichprobe mit $X_i \sim N(\mu, \sigma^2)$ für i = 1, ..., n. Zeige, dass dann

$$\frac{\sqrt{n}(\overline{X}_n-\mu)}{S_n}\sim t_{n-1}.$$