

ulm university universität **UU**

Prof. Dr. Volker Schmidt Matthias Neumann

Sommersemester 2015

Räumliche Statistik – Übungsblatt 7

Präsentation in der Übung am 10.06.15

Aufgabe 1 (4 + 3 Punkte)

Sei $\{N_B, B \in \mathcal{B}(\mathbb{R}^d)\}$ ein stationärer Cox-Prozess mit Intensität $\lambda > 0$ und zufälligem Intensitätsmaß $\{\Lambda_B, B \in \mathcal{B}(\mathbb{R}^d)\}$.

(a) Sei $k \in \{0, 1, ...\}$ und s > 0 beliebig. Zeige

$$\mathbb{P}(N_{[0,1]^d} \ge k) \le \mathbb{E} \exp(\Lambda_{[0,1]^d}(e^s - 1) - ks).$$

Hinweis: Verwende die Markow-Ungleichung.

(b) Sei nun d=2. Wir betrachten nun den Spezialfall, dass $\{N_B, B \in \mathcal{B}(\mathbb{R}^2)\}$ ein modulierter Poisson-Prozess ist. Sei nun $\{S_n, n \geq 1\}$ die messbare Indizierung eines homogenen Poisson-Prozesses in \mathbb{R}^2 mit Intensität $\lambda_0 = 20$ und $\Xi = \bigcup_{n \geq 1} B(S_n, 1/20)$. Das zufällige Intensitätsmaß $\{\Lambda_B, B \in \mathcal{B}(\mathbb{R}^2)\}$ sei durch $\Lambda_B = 100\nu_2(B \cap \Xi)$ gegeben. Schreibe ein Programm mit R oder Matlab, um $\{N_B, B \in \mathcal{B}(\mathbb{R}^2)\}$ auf $[0, 1]^2$ zu simulieren. Schätze die Wahrscheinlichkeit $\mathbb{P}(N_{[0,1]^2} \geq 15)$ mit 100 Realisierungen. Achte bei der Simulation darauf, dass Randeffekte vermieden werden.

Aufgabe 2 (3 + 3 Punkte)

Sei r > 0 und $\{(S_n, T_n), n \ge 1\}$ die messbare Indizierung eines homogenen Poisson-Prozesses in $\mathbb{R}^d \times [0, \infty)$ mit Intensität 1. Definiere für jedes $t \ge 0$ die zufällige Menge $\Xi(t) = \bigcup_{n:T_n \le t} B(S_n, r)$.

- (a) Zeige $\inf\{t: o \in \Xi(t)\} < \infty$ f.s.
- (b) Sei z > 0 beliebig. Zeige $\inf\{t : [-z/2, z/2]^d \subset \Xi(t)\} < \infty$ f.s. Hinweis: Verwende das Lemma von Borel-Cantelli in beiden Teilaufgaben. Betrachte für Teilaufgabe (b) zunächst die Menge $[0, r/\sqrt{d}]^d$.

Aufgabe 3 (3+2+2) Punkte)

Sei $\{N_B, B \in \mathcal{B}(\mathbb{R}^d)\}$ ein stationärer Cox-Prozess in \mathbb{R}^d mit Intensität $\lambda > 0$ und zufälligem Intensitätsmaß $\{\Lambda_B, B \in \mathcal{B}(\mathbb{R}^d)\}$. Ferner sei X eine nicht-negative, integrierbare Zufallsvariable, die auf dem selben Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$ definiert ist wie $\{\Lambda_B, B \in \mathcal{B}(\mathbb{R}^d)\}$. Zusätzlich gelte

$$\Lambda_B(\omega) \le X(\omega)\nu_d(B) \tag{1}$$

für jedes $\omega \in \Omega$ und für alle $B \in \mathcal{B}(\mathbb{R}^d)$ mit $B \subset [-1/2, 1/2]^d$.

(a) Zeige

$$\lim_{t \to 0} \frac{1}{t^d} \left(\mathbb{E} N_{[-t/2, t/2]^d} - \mathbb{P}(N_{[-t/2, t/2]^d} = 1) \right) = 0.$$

(b) Zeige mit Hilfe von Teilaufgabe (a)

$$\lim_{t \to 0} \frac{1}{t^d} \, \mathbb{P}(N_{[-t/2, t/2]^d} \ge 2) = 0$$

und

$$\lim_{t\to 0}\frac{1}{t^d}\mathbb{P}(N_{[-t/2,t/2]^d}=1)=\lambda.$$

(c) Zeige, dass die Bedingung (1) sowohl für Matérn-Cluster-Prozesse als auch für modulierte Poisson-Prozesse erfüllt ist.