

The multidimensional Itô Integral and the multidimensional Itô Formula

Eric Müller | June 1, 2015 | Seminar on Stochastic Geometry and its applications

Recall - Class of integrands for 1-dimensional Itô Integral Let $\mathcal{V}=\mathcal{V}(S, T)$ be the class of functions

$$
f(t, \omega):[0, \infty) \times \Omega \rightarrow \mathbb{R}
$$

such that
(i) $(t, \omega) \rightarrow f(t, \omega)$ is $\mathcal{B} \times \mathcal{F}$ - measurable
(ii) $f(t, \omega)$ is \mathcal{F}_{t} - adapted
(iii) $\mathbb{E}\left[\int_{S}^{T} f(t, \omega)^{2} d t\right]<\infty$

Extension of \mathcal{V}

(ii)' There exists a filtration $\mathcal{H}=\left(\mathcal{H}_{t}\right)_{t \geq 0}$ such that
a) B_{t} is a martingale w.r.t. $\left(\mathcal{H}_{t}\right)_{t \geq 0}$
b) $f(t, \omega)$ is \mathcal{H}_{t} - adapted

Example

Let $B_{t}(\omega)=\left(B_{1}(t, \omega), \ldots, B_{n}(t, \omega)\right), 0 \leq t \leq T$ be n-dimensional Brownian motion and define

$$
\mathcal{F}_{t}^{(n)}=\sigma\left(B_{i}(s, \cdot): 1 \leq i \leq n, 0 \leq s \leq t\right) .
$$

Then $B_{k}(t, \omega)$ is a martingale w.r.t. $\mathcal{F}_{t}^{(n)}$. Hence we can choose $\mathcal{H}_{t}=\mathcal{F}_{t}^{(n)}$ and thus $\int_{0}^{t} f(s, \omega) d B_{k}(s, \omega)$ exists for $\mathcal{F}_{t}^{(n)}$ - adapted integrands f.

Definition - multidimensional Itô Integral

Let $B(t, \omega)=\left(B_{1}(t, \omega), \ldots, B_{n}(t, \omega)\right)$ be n-dimensional Brownian motion and $v=\left[v_{i j}(t, \omega)\right]$ be a $m \times n$-matrix where each entry $v_{i j}(t, \omega)$ satisfies (i), (iii) and (ii)' w.r.t. some filtration $\mathcal{H}=\left(\mathcal{H}_{t}\right)_{t \geq 0}$. Then we define

$$
\int_{S}^{T} v d B=\int_{S}^{T}\left(\begin{array}{ccc}
v_{11} & \ldots & v_{1 n} \\
\vdots & & \vdots \\
v_{m 1} & \ldots & v_{m n}
\end{array}\right)\left(\begin{array}{c}
d B_{1} \\
\vdots \\
d B_{n}
\end{array}\right)
$$

to be the $m \times 1$-matrix whose i'th component is

$$
\sum_{j=1}^{n} \int_{s}^{T} v_{i j}(s, \omega) d B_{j}(s, \omega)
$$

Definition - multidimensional Itô processes

Let $B(t, \omega)=\left(B_{1}(t, \omega), \ldots, B_{m}(t, \omega)\right)$ denote m-dimensional Brownian motion. If the processes $u_{i}(t, \omega)$ and $v_{i j}(t, \omega)$ satisfy the conditions given in the definition of the 1 -dimensional ltô process for each $1 \leq i \leq n, 1 \leq j \leq m$ then we can form n 1-dimensional Itô processes

$$
\begin{array}{cccc}
d X_{1} & =u_{1} d t+v_{11} d B_{1}+\ldots & +v_{1 m} d B_{m} \\
\vdots & \vdots & & \\
d X_{n} & =u_{n} d t+v_{n 1} d B_{1}+\ldots & +v_{n m} d B_{m}
\end{array}
$$

Or, in matrix notation

$$
d X(t)=u d t+v d B(t)
$$

where

$$
X(t)=\left(\begin{array}{c}
X_{1}(t) \\
\vdots \\
X_{n}(t)
\end{array}\right), u=\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right), v=\left(\begin{array}{ccc}
v_{11} & \ldots & v_{1 m} \\
\vdots & & \vdots \\
v_{n 1} & \ldots & v_{n m}
\end{array}\right), d B(t)=\left(\begin{array}{c}
d B_{1}(t) \\
\vdots \\
d B_{m}(t)
\end{array}\right)
$$

Then $X(t)$ is called an n-dimensional Itô process.

Theorem - The general Itô formula
Let

$$
X(t)=X(0)+\int_{0}^{t} u(s) d s+\int_{0}^{t} v(s) d B(s)
$$

be an n -dimensional Itô process. Let $g(t, x)=\left(g_{1}(t, x), \ldots, g_{p}(t, x)\right), p \in \mathbb{N}$, be a C^{2} map from $[0, \infty) \times \mathbb{R}^{n}$ into \mathbb{R}^{p}. Then the process

$$
Y(t, \omega)=g(t, X(t))
$$

is again an Itô process, whose k'th component, $k=1, \ldots, p$, is given by

$$
\begin{aligned}
Y_{k}(t)= & Y_{k}(0)+\int_{0}^{t}\left(\frac{\partial g_{k}}{\partial t}(s, X(s))+\sum_{i=1}^{n} \frac{\partial g_{k}}{\partial x_{i}}(s, X(s)) u_{i}(s)\right. \\
& \left.+\frac{1}{2} \sum_{i, j=1}^{n} \frac{\partial^{2} g_{k}}{\partial x_{i} \partial x_{j}}(s, X(s)) v_{i}(s) v_{j}(s)^{T}\right) d s \\
& +\sum_{i=1}^{n} \int_{0}^{t} \frac{\partial g_{k}}{\partial x_{i}}(s, X(s)) v_{i}(s) d B(s)
\end{aligned}
$$

with $v_{i}(s)$ the i'th row of v.

Examples

a) Let $B(t, \omega)=\left(B_{1}(t, \omega), \ldots, B_{n}(t, \omega)\right)$ be an n-dimensional Brownian motion, $n \geq 2$, and consider

$$
R(t, \omega)=\left(B_{1}^{2}(t, \omega)+\cdots+B_{n}^{2}(t, \omega)\right)^{1 / 2}
$$

Then it follows with Itô's formula

$$
R(t)=\sum_{i=1}^{n} \int_{0}^{t} \frac{B_{i}(s)}{R(s)} d B_{i}(s)+\int_{0}^{t} \frac{n-1}{2 R(s)} d s
$$

b) Let B_{t} be an 1-dimensional Brownian motion and $Y_{t}=2+t+e^{B_{t}}$. Then

$$
Y_{t}=3+\int_{0}^{t}\left(1+e^{B_{s}}\right) d s+\int_{0}^{t} e^{B_{s}} d B_{s}
$$

b) Let $B(t, \omega)=\left(B_{1}(t, \omega), B_{2}(t, \omega)\right)$ be a 2-dimensional Brownian motion and $Y_{t}=B_{1}^{2}(t)+B_{2}^{2}(t)$. Then

$$
Y_{t}=\int_{0}^{t} 2 d s+\int_{0}^{t} 2 B_{1}(s) d B_{1}(s)+\int_{0}^{t} 2 B_{2}(s) d B_{2}(s)
$$

d) With Itô's formula it holds that

$$
\int_{0}^{t} B_{s}^{2} d B_{s}=\frac{1}{3} B_{t}^{3}-\int_{0}^{t} B_{s} d s
$$

d) Let B_{t} be an 1-dimensional Brownian motion. Define

$$
\beta_{k}=\mathbb{E}\left[B_{t}^{k}\right] ; \quad k=0,1,2 \ldots ; \quad t \geq 0
$$

Use Itô's formula to prove that

$$
\beta_{k}=\frac{1}{2} k(k-1) \int_{0}^{t} \beta_{k-2}(s) d s ; \quad k \geq 2
$$

Integration by parts

Let X_{t}, Y_{t} be two 1-dimensional ltô processes, i.e.,

$$
\begin{aligned}
& X_{t}=X_{0}+\int_{0}^{t} u_{X}(s) d s+\int_{0}^{t} v_{X}(s) d B_{s} \\
& Y_{t}=Y_{0}+\int_{0}^{t} u_{Y}(s) d s+\int_{0}^{t} v_{Y}(s) d B_{s}
\end{aligned}
$$

Then it holds

$$
\begin{aligned}
X_{t} Y_{t}= & X_{0} Y_{0}+\int_{0}^{t}\left(X_{s} u_{Y}(s)+Y_{s} u_{X}(s)+v_{X}(s) v_{Y}(s)\right) d s \\
& +\int_{0}^{t} X_{s} v_{Y}(s)+Y_{s} v_{X}(s) d B_{s}
\end{aligned}
$$

Exponential martingales

Suppose $\theta(t, \omega)=\left(\theta_{1}(t, \omega), \ldots, \theta_{n}(t, \omega)\right)$ with
$\theta_{k}(t, \omega) \in \mathcal{V}(0, T) \forall k=1, \ldots, n$, where $T \leq \infty$. Define

$$
Z_{t}=\exp \left\{\int_{0}^{t} \theta(s, \omega) d B(s)-\frac{1}{2} \int_{0}^{t} \theta(s, \omega)^{T} \cdot \theta(s, \omega) d s\right\}, \quad 0 \leq t \leq T
$$

where $B(s)$ is an n-dimensional Brownian motion. Then it holds
a)

$$
Z_{t}=1+\int_{0}^{t} Z_{s} \theta(s, \omega) d B(s)
$$

b) Z_{t} is a martingale for $t \leq T$, provided that

$$
Z_{t} \theta_{k}(t, \omega) \in \mathcal{V}(0, T) \forall k=1, \ldots, n
$$

References

- Øksendal, B. (2003) Stochastic Differential Equations: An Introduction with Applications, Sixth Edition, Springer-Verlag, Berlin
- Karatzas, I., Shreve, S.E. (1998) Brownian Motion and Stochastic Calculus, Second Edition, Springer-Verlag, New York

