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Bennet Ströh | April 2015 |



Seite 2 Seminar on Stochastic Geometry and its applications | | April 2015

Definition 01: Stochastic process
Given a probability space (Ω,F ,P) and a measurable space (E ,Σ), an
E-valued stochastic process is a family of E-valued random variables
Xt : Ω→ E , indexed by an arbitrary set T (called the index set). That is, a
stochastic process X is a family {Xt : t ∈ T} where each Xt is an E-valued
random variable on Ω. The space E is then called the state space of the
process. When T= N (or T= N0) or any other countable set, {Xt} is said to be
a discrete-time process, and when T= [0,∞), it is called a continuous-time
process. From now on: T = [0,∞) and E = Rn.
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Definition 02: Trajectory
The function (defined on the index set T = [0,∞) and taking values in Rn):
t → Xt (ω) is called the trajectory (or the sample path) of the stochastic
process X corresponding to the outcome ω. So, to every outcome ω ∈ Ω
corresponds a trajectory of the process which is a function defined on the
index set T and taking values in Rn.
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Definition 03: (finite-dimensional) distributions
Let (Ω,F ,P) be a probability space. The (finite-dimensional) distributions
of the process {Xt : t ∈ T} are the measures µt1,...,tk defined on Rnk , k = 1,
2,... , by

µt1,...,tk (F1×F2×...×Fk ) = P[Xt1 ∈ F1, ...,Xtk ∈ Fk ] ti ∈ T ; F1, ...,Fk ∈ B(Rn)



Seite 5 Seminar on Stochastic Geometry and its applications | | April 2015

Definition 04: Modification
Let (Ω,F ,P) be a probability space, T = [0,∞) index set and {Xt : t ∈ T},
{Yt : t ∈ T} stochastic processes on (Ω,F ,P). Then we say that Xt is a
version (or a modification) of Yt , if

P({ω ∈ Ω; Xt (ω) = Yt (ω)}) = 1 ∀t ∈ [0,∞)

Note that if Xt is a version of Yt , then Xt and Yt have the same
finite-dimensional distributions.
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Definition 05: stationary processes
A stochastic process Xt is called stationary if Xt1 , . . . ,Xtn have the same
distribution for any t1, . . . tn ∈ T .
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Remark 01: Kolmogorov’s extension theorem
For all permutations σ, t1, ..., tk ∈ T , k ∈ N let νt1,...,tk be probability measures
on Rnk s.t.

(K1) νtσ(1),...,tσ(k)(F1 × ...× Fk ) = νt1,...,tk (Fσ−1(1) × ...× Fσ−1(k))

(K2) νt1,...,tk (F1 × ...× Fk ) = νt1,...,tk ,tk+1,...,tk+m (F1 × ...× Fk × Rn × ...× Rn)∀m ∈ N

Then there exists a probability space (Ω,F ,P) and a stochastic process {Xt}
on Ω, Xt : Ω→ Rn, s.t.

νt1,...,tk (F1 × ...× Fk ) = P[Xt1 ∈ F1, ...,Xtk ∈ Fk ]

∀ti ∈ T , k ∈ N and all Borel Sets Fi
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Construction 1
To construct the stochastic process Brownian Motion it suffices, by the
Kolmogorov extension theorem, to specify a family {νt1,...,tk } of probability
measures satisfying (K1) and (K2).
Fix x ∈ Rn and define:

p(t , x , y) =
1

(2πt)
n
2
· exp

(
−||x − y ||2

2t

)
y ∈ Rn, t > 0

, which is the probability density function of the normal distribution.
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Construction 2
If 0 ≤ t1 ≤ ... ≤ tk define a measure (compare measure theory) νt1,...,tk on
Rnk by

νt1,...,tk (F1 × ...× Fk ) =

∫
F1×...×Fk

p(t1, x , x1)p(t2 − t1, x1, x2) · · · p(tk − tk−1, xk−1, xk )dx1 · · · dxk (1)

w.r.t. Lebesgue measure and the convention
∫
Rn

p(0, x , y)dy = δx (y).
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Construction 3
{νt1,...,tk } satisfies (K1) and (K2), since we extend the defintion to all finite
sequences of ti ’s by using (K1) and

∫
Rn

p(t , x , y)dy = 1,∀t ≥ 0. So by

Kolmogorov’s theorem there exists a probability space (Ω,F ,P) and a
stochastic process {Xt}t≥0 on Ω so that the finite-dimensional distributions
are given by (1), s.t.

P(Bt1 ∈ F1 × ...× Btk ∈ Fk ) =

∫
F1×...×Fk

p(t1, x , x1)p(t2 − t1, x1, x2) · · · p(tk − tk−1, xk−1, xk )dx1 · · · dxk (2)
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Definition 06: Brownian Motion
Such a process is called (a version of) Brownian Motion starting at x ∈ Rn,
w.l.o.g. x = 0.
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Remark 02: properties of Brownian Motion

(i) P[(B0 = x)] = 1

(ii) Brownian Motion thus defined ist not unique. There exist several
Quadruples (Bt ,Ω,F ,P) such that (2) holds.

(iii) If Bt = (B(1)
t , . . . ,B(n)

t ) is n-dimensional Brownian Motion, then the
1-dimensional processes {B(j)

t }t≥0 are independent, 1-dimensional
Brownian Motions.

(iv) Cov(Bt ,Bs) = min{s, t} for one-dimensional Brownian Motions. For
n-dimensional Brownian Motion: Cov(Bt ,Bs) = min{s, t} · En

(v) The Brownian Motion is also called Wiener Process.
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Definition 06: (almost sure) continuous stochastic processes
A stochastic process {Xt : t ∈ T} is almost surely continuous, if
P
(

lim
t→s

Xt = Xs∀s ∈ T
)

= 1.
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Remark 03: different Definition of Brownian Motion
In the literature we often find a different Definition of the Brownian Motion: Let
(Ω,F ,P) be a probability space and Xt a stochastic process on (Ω,F ,P)
(T = [0,∞)). Then Xt is a Brownian Motion if it satisfies the following four
conditions:

1. {Xt : t ∈ T} has independent increments (for any
0 ≤ t1 < t2 < · · · < tn : Xt2 − Xt1 ,Xt3 − Xt2 , . . . ,Xtn − Xtn−1 are
independent).

2. Xt2 − Xt1 ∼ N(0, t2 − t1) for any t1, t2 ∈ T with t1 < t2
3. X0 = 0 almost surely

4. the trajectories t → Xt (ω), t ∈ T , are continuous for any ω ∈ Ω.

Question: Does our construction from above also satisfies this definition?
Answer: Yes, it does!



Seite 15 Seminar on Stochastic Geometry and its applications | | April 2015

Proposition 01: our construction is a Brownian Motion
Our construction of the Brownian Motion satisfies 1. 2. and 3. from the
definition above.
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Proof 1:

1. Let Y ∼ N(µ,K ) be an n-dimensional gaussian random vector and A be
a (n × n)-Matrix. Then AY ∼ N(Aµ,AKAT ). This is a result from the
explicit from of the characteristic function of Y . Now k ∈ N and:

0 = t0 ≤ t1 < t2 < · · · < tk ,

Y = (Xt0 , . . . ,Xtk )T ,

Z = (Xt0 ,Xt1 − Xt0 , . . . ,Xtk − Xtk−1 )T ,

A =


1 0 0 . . . . . . 0 0
−1 1 0 . . . . . . 0 0
0 −1 1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −1 1


so that Z = AY .



Seite 17 Seminar on Stochastic Geometry and its applications | | April 2015

Proof 2:
Then Z is also gaussian with a covariance matrix which is diagonal. Indeed:
cov
(

X(ti+1) − X(ti ),X(tj+1) − X(tj )

)
= min{ti+1, tj+1}− min{ti+1, tj}−

min{ti , tj+1}+ min {ti , tj} = 0 for i 6= j . Therefore the coordinates of Z are
uncorrelated. Because Z is gaussian distributed, the coordinates are
independent and the increments of Xt are independent too.
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Proof:

2. Let 0 ≤ s < t . Then Xt − Xs ∼ N(0, (t − s)), because Z = AY is
gaussian distributed and E (Xt )− E (Xs) = 0 and var(Xt − Xs) =
var(Xt )− 2 cov(Xs,Xt ) + var(Xs) = t − 2 min{s, t}+ s = t − s.

3. Since Xt ∼ N(0, t)⇒ X0 ∼ N(0, 0)⇒ X0 = 0 almost surely.

4. We need one more Proposition for this result.
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Remark 04: Kolmogorov’s continuity theorem
Suppose that the process {Xt}t≥0 satisfies the following condition: For all
T > 0 there exist positive constants α, β,D s.t.

E [||Xt − Xs||α] ≤ D · ||t − s||1+β 0 ≤ s, t ≤ T (3)

Then there exists a continuous version of X.
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Proposition 02: continuous version of Brownian Motion
Brownian Motion satisfies Kolmogorov’s condition (3) with α = 4,
D = n(n + 2) and β = 1, and therefore the Brownian Motion has a
continuous version.
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Proof:
Remember, if

Z ∼ N(0, σ2)⇒ E(Z k ) = µk =

{
0 if k odd
(k − 1)!! · σk if k even

k ∈ N,

B(i)
t ∼ N(0, t)∀i and B(i)

t − B(i)
s ∼ N(0, (t − s))∀i . Then:

E [||Bt − Bs||4] =
n∑

i=1

E [(B(i)
t − B(i)

s )4] +
n∑

j=1j 6=i

E [(B(i)
t − B(i)

s )2(B(j)
t − B(j)

s )2]

= n · 4!

2! · 4 · (t − s)2 + n(n − 1)(t − s)2 = n(n + 2)(t − s)

�
We also notice that the Brownian Motion has a continuous version and
therefore our construction of the Brownian Motion satisfies the definition from
above.



Seite 22 Seminar on Stochastic Geometry and its applications | | April 2015

Example 01: continuity properties of Trajectory
In general the (finite-dimensional) distribution alone does not give all the
information regarding to continuity properties of stochastic processes. To
illustrate that, consider the following example:



Seite 23 Seminar on Stochastic Geometry and its applications | | April 2015

Proof:
Let (Ω,F ,P) = ([0,∞],B, µ) where B denotes the Borel σ-Algebra on [0,∞)
be a probability space. µ is a probability measure on [0,∞), with no single
point mass (@x ∈ [0,∞) : µ(x) > 0). Define:

Xt (ω) =

{
1, if t = ω

0, otherwise
and Yt (ω) = 0 ∀(t , ω) ∈ [0,∞)× [0,∞)

Let ti ∈ [0,∞) and F1, ...,Fk ∈ B([0,∞)) Then:

µ[Xt1 ∈ F1, ...,Xtk ∈ Fk ] = µ(ω ∈ [0,∞) : Xt1 (ω) ∈ F1, ...,Xtk (ω) ∈ Fk ) ={
1, 0 ∈ Fk∀k
0, otherwise

= µ(ω ∈ [0,∞) : Yt1 (ω) ∈ F1, ...,Ytk (ω) ∈ Fk ) =

µ[Yt1 ∈ F1, ...,Ytk ∈ Fk ].
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Proof:
Notice that µ([0,∞) \ {t1, . . . , tk}) = µ([0,∞)) = 1. Therefore Xt and Yt have
the same distributions. Also µ(ω ∈ [0,∞) : Xt (ω) = Yt (ω)) = 1⇒ Xt is a
version of Yt . And yet we have that t → Yt (ω) is continuous for all ω, while
t → Xt (ω) is discontinuous for all ω.
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Example 02: Sum of Brownian Motions
Let Bt be Brownian Motion and fix t0 ≥ 0. Then B̃t := Bt0+t − Bt0 ; t ≥ 0 is a
Brownian Motion.
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Proof:
We will show that B̃t satisfies the remark 03:

1. Since Bt is a Brownian Motion, Bt has independent increments.
Therefore B̃t has independent increments too (Notice:
B̃t1 − B̃t2 = Bt0+t2 − Bt0 − Bt0+t1 + Bt0 = Bt0+t2 − Bt0+t1 , which is
independent of Bt0+t3 − Bt0+t4∀t1, t2, t3 ∈ T ).

2. B̃t2 − B̃t1 ∼ N(0, t2 − t1) for any t1, t2 ∈ T with t1 < t2, because
B̃t2 − B̃t1 = Bt0+t2 − Bt0+t1 ∼ N(0, t2 − t1)

3. B̃0 := Bt0+0 − Bt0 = 0 almost surely.

4. Since the trajectories t → Bt (ω), t ∈ T , are continuous for any ω ∈ Ω
t → B̃t (ω), t ∈ T , are continuous too.
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Example 03: Brownian Motion has stationary increments
Let (C[0,∞),B(C[0,∞)),P) be the canonical probability space. The
Brownian motion Bt has stationary increments, i.e. that the process
{Bt+h − Bt}h≥0 has the same distribution for all t .
Proof: Since B̃t := Bt0+t − Bt0 is a Brownian Motion, Bt0+t − Bt0 ∼ N(0, t). �
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Example 04:
Let (Rn,B(Rn),P) be a probability space, {Bt : t ∈ [0,∞)} n-dimensional
Brownian Motion on (Rn,B(Rn),P) and let K ⊂ Rn have zero n-dimensional
Lebesgue measure. Then the expected total length of time that Bt spends in
K is zero. Proof:

E

 ∞∫
0

χK (Bt )dt

 =

∞∫
0

E(χK (Bt ))dt =

∞∫
0

P(Bt ∈ K )dt

=

∞∫
0

1
(2πt)

n
2

∫
K

exp
(
−||x − y ||2

2t

)
dy


︸ ︷︷ ︸

=0 (compare measure theory and χK ≥ 0 a.s.)

dt = 0

∀x ∈ Rn,K ⊂ Rn with K Lebesgue measure zero.

�
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Definition 07: bounded variation
For t > 0 a function f : [0, t ]→ R is said to be of bounded variation, if

V (1)
f := sup

{
m∑

k=1

|f (tk )− f (tk−1)| : m ∈ N, 0 = t0 < · · · < tm = t

}

is finite. Otherwise f is said to be of unbounded variation.
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Proposition 03: Brownian Motion is of unbounded variation
The Brownian Motion is almost surely of unbounded Variation (for all t > 0).
Proof: w.l.o.g. t=1 (for 6= 1 use the scaling properties of the Brownian Motion).
Let Xt be a Brownian Motion, then:

Zn =
2n∑

k=1

|Xk2−n − X(k−1)2−n | =
√

2n 1
2n

2n∑
k=1

|
√

2n(Xk2−n − X(k−1)2−n )|︸ ︷︷ ︸
n→∞−→ E [|X1|] in probability (law of large numbers)

The convergence in probability follows from the law of large numbers ,
because all summands are independent and distributed like |X1|. Therefore
Zn →∞ in probability. Because of the triangle inequality the random variables
Zn are monotonically increasing thus Zn converges almost surely to infinity. �



Seite 31 Seminar on Stochastic Geometry and its applications | | April 2015

Proposition 04: Brownian Motion is of finite quadratic variation
Let πm : 0 = tm

0 < tm
1 < · · · < tm

m = t(m ∈ N) be a partition of [0, t ] which
mesh size converges to zero. Then:

lim
m→∞

m∑
k=1

(
Xtm

k
− Xtm

k−1

)2
= t , in probability.
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Proof 1:
Define: Zm =

m∑
k=1

(
Xtm

k
− Xtm

k−1

)2
. Then:

E [Zm] =
m∑

k=1

E
[(

Xtm
k
− Xtm

k−1

)2
]

︸ ︷︷ ︸
=tm

k −tm
k−1

= t

and
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Proof 2:

var(Zm) =
m∑

k=1

var
((

Xtm
k
− Xtm

k−1

)2
)

︸ ︷︷ ︸
=
(

tm
k −tm

k−1

)2
var(X2

1 )

≤ sup
k=1,...,m

(
tm
k − tm

k−1
) m∑

k=1

(
tm
k − tm

k−1
)

var
(

X 2
1

)
= var

(
X 2

1

)
t sup

k=1,...,m

(
tm
k − tm

k−1
)

m→∞−→ 0.

The convergence is a consequence of the Tschebyscheff inequality. �
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Remark 04:

I One can show: lim
m→∞

m∑
k=1

(
Xtm

k
− Xtm

k−1

)2
= t , for almost all ω ∈ Ω.

I note that a process may be of finite quadratic variation and its paths be
nonetheless almost surely of infinite quadratic variation for every t > 0
(e.g. Brownian Motion)
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