ulm university universität **UUU**

(日) (個) (E) (E) (E)

The Brownian Motion

Bennet Ströh | April 2015 |

Definition 01: Stochastic process

Given a probability space (Ω, \mathcal{F}, P) and a measurable space (E, Σ) , an E-valued **stochastic process** is a family of E-valued random variables $X_t : \Omega \to E$, indexed by an arbitrary set T (called the index set). That is, a stochastic process X is a family $\{X_t : t \in T\}$ where each X_t is an E-valued random variable on Ω . The space E is then called the **state space** of the process. When $T = \mathbb{N}$ (or $T = \mathbb{N}_0$) or any other countable set, $\{X_t\}$ is said to be a **discrete-time** process, and when $T = [0, \infty)$, it is called a **continuous-time** process. From now on: $T = [0, \infty)$ and $E = \mathbb{R}^n$.

Definition 02: Trajectory

The function (defined on the index set $T = [0, \infty)$ and taking values in \mathbb{R}^n): $t \to X_t(\omega)$ is called the **trajectory** (or the sample path) of the stochastic process X corresponding to the outcome ω . So, to every outcome $\omega \in \Omega$ corresponds a trajectory of the process which is a function defined on the index set T and taking values in \mathbb{R}^n .

Definition 03: (finite-dimensional) distributions

Let (Ω, \mathcal{F}, P) be a probability space. The **(finite-dimensional) distributions** of the process $\{X_t : t \in T\}$ are the measures $\mu_{t_1,...,t_k}$ defined on \mathbb{R}^{nk} , k = 1, 2,..., by

$$\mu_{t_1,...,t_k}(F_1 \times F_2 \times ... \times F_k) = P[X_{t_1} \in F_1,...,X_{t_k} \in F_k] \qquad t_i \in T; F_1,...,F_k \in \mathcal{B}(\mathbb{R}^n)$$

Definition 04: Modification

Let (Ω, \mathcal{F}, P) be a probability space, $T = [0, \infty)$ index set and $\{X_t : t \in T\}$, $\{Y_t : t \in T\}$ stochastic processes on (Ω, \mathcal{F}, P) . Then we say that X_t is a **version** (or a modification) of Y_t , if

$$P(\{\omega \in \Omega; X_t(\omega) = Y_t(\omega)\}) = 1 \qquad \forall t \in [0, \infty)$$

- ロンス通どス ヨンス ヨン 三日

Note that if X_t is a version of Y_t , then X_t and Y_t have the same finite-dimensional distributions.

Definition 05: stationary processes

A stochastic process X_t is called **stationary** if X_{t_1}, \ldots, X_{t_n} have the same distribution for any $t_1, \ldots, t_n \in T$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Remark 01: Kolmogorov's extension theorem

For all permutations σ , t_1 , ..., $t_k \in T$, $k \in \mathbb{N}$ let $\nu_{t_1,...,t_k}$ be probability measures on \mathbb{R}^{nk} s.t.

(K1)
$$\nu_{t_{\sigma(1)},\ldots,t_{\sigma(k)}}(F_1 \times \ldots \times F_k) = \nu_{t_1,\ldots,t_k}(F_{\sigma^{-1}(1)} \times \ldots \times F_{\sigma^{-1}(k)})$$

(K2) $\nu_{t_1,\ldots,t_k}(F_1 \times \ldots \times F_k) = \nu_{t_1,\ldots,t_k,t_{k+1},\ldots,t_{k+m}}(F_1 \times \ldots \times F_k \times \mathbb{R}^n \times \ldots \times \mathbb{R}^n) \forall m \in \mathbb{N}$

Then there exists a probability space (Ω, \mathcal{F}, P) and a stochastic process $\{X_t\}$ on $\Omega, X_t : \Omega \to \mathbb{R}^n$, s.t.

$$\nu_{t_1,\ldots,t_k}(F_1\times\ldots\times F_k)=P[X_{t_1}\in F_1,\ldots,X_{t_k}\in F_k]$$

 $\forall t_i \in T, k \in \mathbb{N}$ and all Borel Sets F_i

Construction 1

To construct the stochastic process Brownian Motion it suffices, by the Kolmogorov extension theorem, to specify a family $\{\nu_{t_1,\ldots,t_k}\}$ of probability measures satisfying (K1) and (K2).

Fix $x \in \mathbb{R}^n$ and define:

$$p(t,x,y) = \frac{1}{(2\pi t)^{\frac{n}{2}}} \cdot \exp\left(-\frac{||x-y||^2}{2t}\right) \qquad y \in \mathbb{R}^n, t > 0$$

, which is the probability density function of the normal distribution.

Construction 2 If $0 \le t_1 \le ... \le t_k$ define a measure (compare measure theory) $\nu_{t_1,...,t_k}$ on \mathbb{R}^{nk} by

$$\nu_{t_1,\ldots,t_k}(F_1 \times \ldots \times F_k) =$$

$$\int_{F_1 \times \ldots \times F_k} p(t_1, x, x_1) p(t_2 - t_1, x_1, x_2) \cdots p(t_k - t_{k-1}, x_{k-1}, x_k) dx_1 \cdots dx_k \quad (1)$$

w.r.t. Lebesgue measure and the convention $\int_{\mathbb{R}^n} p(0, x, y) dy = \delta_x(y)$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● のへの

Construction 3

 $\{\nu_{t_1,...,t_k}\}$ satisfies (K1) and (K2), since we extend the definition to all finite sequences of t_i 's by using (K1) and $\int p(t, x, y) dy = 1, \forall t \ge 0$. So by

Kolmogorov's theorem there exists a probability space (Ω, \mathcal{F}, P) and a stochastic process $\{X_t\}_{t\geq 0}$ on Ω so that the finite-dimensional distributions are given by (1), s.t.

$$P(B_{t_1} \in F_1 \times ... \times B_{t_k} \in F_k) =$$

$$\int_{F_1 \times \ldots \times F_k} p(t_1, x, x_1) p(t_2 - t_1, x_1, x_2) \cdots p(t_k - t_{k-1}, x_{k-1}, x_k) dx_1 \cdots dx_k$$
(2)

◆□> ◆□> ◆ヨ> ◆ヨ> ◆□ > ◆○>

Definition 06: Brownian Motion

Such a process is called (a version of) **Brownian Motion** starting at $x \in \mathbb{R}^n$, w.l.o.g. x = 0.

Remark 02: properties of Brownian Motion

- (i) *P*[(*B*₀ = *x*)] = 1
- Brownian Motion thus defined ist not unique. There exist several Quadruples (*B_t*, Ω, *F*, *P*) such that (2) holds.
- (iii) If $B_t = (B_t^{(1)}, \dots, B_t^{(n)})$ is n-dimensional Brownian Motion, then the 1-dimensional processes $\{B_t^{(j)}\}_{t \ge 0}$ are independent, 1-dimensional Brownian Motions.
- (iv) $Cov(B_t, B_s) = min\{s, t\}$ for one-dimensional Brownian Motions. For n-dimensional Brownian Motion: $Cov(B_t, B_s) = min\{s, t\} \cdot E_n$
- $\left(v\right) \,$ The Brownian Motion is also called Wiener Process.

Definition 06: (almost sure) continuous stochastic processes

A stochastic process $\{X_t : t \in T\}$ is **almost surely continuous**, if $P\left(\lim_{t \to s} X_t = X_s \forall s \in T\right) = 1.$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 二直 - のへで

Remark 03: different Definition of Brownian Motion

In the literature we often find a different Definition of the Brownian Motion: Let (Ω, \mathcal{F}, P) be a probability space and X_t a stochastic process on (Ω, \mathcal{F}, P) $(T = [0, \infty))$. Then X_t is a Brownian Motion if it satisfies the following four conditions:

1. { $X_t : t \in T$ } has independent increments (for any $0 \le t_1 < t_2 < \cdots < t_n : X_{t_2} - X_{t_1}, X_{t_3} - X_{t_2}, \dots, X_{t_n} - X_{t_{n-1}}$ are independent).

2.
$$X_{t_2} - X_{t_1} \sim N(0, t_2 - t_1)$$
 for any $t_1, t_2 \in T$ with $t_1 < t_2$

- 3. $X_0 = 0$ almost surely
- 4. the trajectories $t \to X_t(\omega), t \in T$, are continuous for any $\omega \in \Omega$.

Question: Does our construction from above also satisfies this definition? Answer: Yes, it does!

Proposition 01: our construction is a Brownian Motion

Our construction of the Brownian Motion satisfies 1. 2. and 3. from the definition above.

Proof 1:

 Let Y ~ N(μ, K) be an n-dimensional gaussian random vector and A be a (n × n)-Matrix. Then AY ~ N(Aμ, AKA^T). This is a result from the explicit from of the characteristic function of Y. Now k ∈ N and:

$$0 = t_0 \le t_1 < t_2 < \dots < t_k,$$

$$Y = (X_{t_0}, \dots, X_{t_k})^T,$$

$$Z = (X_{t_0}, X_{t_1} - X_{t_0}, \dots, X_{t_k} - X_{t_{k-1}})^T,$$

$$A = \begin{pmatrix} 1 & 0 & 0 & \dots & \dots & 0 & 0 \\ -1 & 1 & 0 & \dots & \dots & 0 & 0 \\ 0 & -1 & 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & -1 & 1 \end{pmatrix}$$

so that Z = AY.

Proof 2:

Then *Z* is also gaussian with a covariance matrix which is diagonal. Indeed: $\operatorname{cov}(X_{(t_{i+1})} - X_{(t_i)}, X_{(t_{j+1})} - X_{(t_j)}) = \min\{t_{i+1}, t_{j+1}\} - \min\{t_{i+1}, t_j\} - \min\{t_i, t_j\} + \min\{t_i, t_j\} = 0 \text{ for } i \neq j.$ Therefore the coordinates of *Z* are uncorrelated. Because *Z* is gaussian distributed, the coordinates are independent and the increments of *X*_t are independent too.

Proof:

2. Let $0 \le s < t$. Then $X_t - X_s \sim N(0, (t - s))$, because Z = AY is gaussian distributed and $E(X_t) - E(X_s) = 0$ and $var(X_t - X_s) = var(X_t) - 2 \operatorname{cov}(X_s, X_t) + var(X_s) = t - 2 \min\{s, t\} + s = t - s$.

イロト 不得 トイヨト イヨト 二日

- 3. Since $X_t \sim N(0, t) \Rightarrow X_0 \sim N(0, 0) \Rightarrow X_0 = 0$ almost surely.
- 4. We need one more Proposition for this result.

Remark 04: Kolmogorov's continuity theorem

Suppose that the process $\{X_t\}_{t\geq 0}$ satisfies the following condition: For all T > 0 there exist positive constants α, β, D s.t.

$$E[||X_t - X_s||^{\alpha}] \le D \cdot ||t - s||^{1+\beta} \qquad 0 \le s, t \le T$$
(3)

イロン 不通 とうほう 不良 とうほ

Then there exists a continuous version of X.

Proposition 02: continuous version of Brownian Motion

Brownian Motion satisfies Kolmogorov's condition (3) with $\alpha = 4$, D = n(n+2) and $\beta = 1$, and therefore the Brownian Motion has a continuous version.

イロン イボン イモン トモ

Proof:

Remember, if

$$Z \sim N(0, \sigma^2) \Rightarrow E(Z^k) = \mu_k = \begin{cases} 0 & \text{if } k \text{ odd} \\ (k-1)!! \cdot \sigma^k & \text{if } k \text{ even} \end{cases} k \in \mathbb{N},$$

 $B_t^{(i)} \sim N(0, t) orall i and B_t^{(i)} - B_s^{(i)} \sim N(0, (t-s)) orall i.$ Then:

$$E[||B_t - B_s||^4] = \sum_{i=1}^n E[(B_t^{(i)} - B_s^{(i)})^4] + \sum_{j=1 \neq i}^n E[(B_t^{(i)} - B_s^{(i)})^2(B_t^{(j)} - B_s^{(j)})^2]$$

= $n \cdot \frac{4!}{2! \cdot 4} \cdot (t - s)^2 + n(n - 1)(t - s)^2 = n(n + 2)(t - s)$

We also notice that the Brownian Motion has a continuous version and therefore our construction of the Brownian Motion satisfies the definition from above.

Example 01: continuity properties of Trajectory

In general the (finite-dimensional) distribution alone does not give all the information regarding to continuity properties of stochastic processes. To illustrate that, consider the following example:

Proof:

Let $(\Omega, \mathcal{F}, P) = ([0, \infty], \mathcal{B}, \mu)$ where \mathcal{B} denotes the Borel σ -Algebra on $[0, \infty)$ be a probability space. μ is a probability measure on $[0, \infty)$, with no single point mass $(\nexists x \in [0, \infty) : \mu(x) > 0)$. Define:

$$X_t(\omega) = \begin{cases} 1, & \text{if } t = \omega \\ 0, & \text{otherwise} \end{cases} \quad \text{and } Y_t(\omega) = 0 \quad \forall (t, \omega) \in [0, \infty) \times [0, \infty) \end{cases}$$

Let $t_i \in [0,\infty)$ and $F_1,...,F_k \in \mathcal{B}([0,\infty))$ Then:

 $\mu[X_{t_1} \in F_1,...,X_{t_k} \in F_k] = \mu(\omega \in [0,\infty): X_{t_1}(\omega) \in F_1,...,X_{t_k}(\omega) \in F_k) =$

$$\begin{cases} \mathsf{1}, & \mathsf{0} \in F_k \forall k \\ \mathsf{0}, & \mathsf{otherwise} \end{cases} = \mu(\omega \in [\mathsf{0}, \infty) : Y_{t_1}(\omega) \in F\mathsf{1}, ..., Y_{t_k}(\omega) \in F_k) = \end{cases}$$

 $\mu[Y_{t_1} \in F1,...,Y_{t_k} \in F_k].$

Proof:

Notice that $\mu([0,\infty) \setminus \{t_1,\ldots,t_k\}) = \mu([0,\infty)) = 1$. Therefore X_t and Y_t have the same distributions. Also $\mu(\omega \in [0,\infty) : X_t(\omega) = Y_t(\omega)) = 1 \Rightarrow X_t$ is a version of Y_t . And yet we have that $t \to Y_t(\omega)$ is continuous for all ω , while $t \to X_t(\omega)$ is discontinuous for all ω .

Example 02: Sum of Brownian Motions

Let B_t be Brownian Motion and fix $t_0 \ge 0$. Then $\tilde{B}_t := B_{t_0+t} - B_{t_0}$; $t \ge 0$ is a Brownian Motion.

Proof:

We will show that \tilde{B}_t satisfies the remark 03:

- 1. Since B_t is a Brownian Motion, B_t has independent increments. Therefore \tilde{B}_t has independent increments too (Notice: $\tilde{B}_{t_1} - \tilde{B}_{t_2} = B_{t_0+t_2} - B_{t_0} - B_{t_0+t_1} + B_{t_0} = B_{t_0+t_2} - B_{t_0+t_1}$, which is independent of $B_{t_0+t_3} - B_{t_0+t_4} \forall t_1, t_2, t_3 \in T$).
- 2. $\tilde{B}_{t_2} \tilde{B}_{t_1} \sim N(0, t_2 t_1)$ for any $t_1, t_2 \in T$ with $t_1 < t_2$, because $\tilde{B}_{t_2} \tilde{B}_{t_1} = B_{t_0+t_2} B_{t_0+t_1} \sim N(0, t_2 t_1)$
- 3. $\tilde{B}_0 := B_{t_0+0} B_{t_0} = 0$ almost surely.
- 4. Since the trajectories $t \to B_t(\omega), t \in T$, are continuous for any $\omega \in \Omega$ $t \to \tilde{B}_t(\omega), t \in T$, are continuous too.

Example 03: Brownian Motion has stationary increments

Let $(\mathcal{C}[0,\infty), \mathcal{B}(\mathcal{C}[0,\infty)), P)$ be the canonical probability space. The Brownian motion B_t has stationary increments, i.e. that the process $\{B_{t+h} - B_t\}_{h \ge 0}$ has the same distribution for all t. Proof: Since $\tilde{B}_t := B_{t_0+t} - B_{t_0}$ is a Brownian Motion, $B_{t_0+t} - B_{t_0} \sim N(0, t)$.

 \square

Example 04:

Let $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), P)$ be a probability space, $\{B_t : t \in [0, \infty)\}$ *n*-dimensional Brownian Motion on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), P)$ and let $K \subset \mathbb{R}^n$ have zero *n*-dimensional Lebesgue measure. Then the expected total length of time that B_t spends in *K* is zero. Proof:

$$E\left(\int_{0}^{\infty} \chi_{K}(B_{t})dt\right) = \int_{0}^{\infty} E(\chi_{K}(B_{t}))dt = \int_{0}^{\infty} P(B_{t} \in K)dt$$
$$= \int_{0}^{\infty} \frac{1}{(2\pi t)^{\frac{n}{2}}} \underbrace{\left(\int_{K} exp\left(-\frac{||x-y||^{2}}{2t}\right)dy\right)}_{=0 \text{ (compare measure theory and } \chi_{K} \ge 0 \text{ a.s.})} dt = 0$$

 $\forall x \in \mathbb{R}^n, K \subset \mathbb{R}^n$ with K Lebesgue measure zero.

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ のへの

Definition 07: bounded variation

For t > 0 a function $f : [0, t] \rightarrow \mathbb{R}$ is said to be of **bounded variation**, if

$$V_{f}^{(1)} := \sup \left\{ \sum_{k=1}^{m} |f(t_{k}) - f(t_{k-1})| : m \in \mathbb{N}, 0 = t_{0} < \cdots < t_{m} = t \right\}$$

is finite. Otherwise f is said to be of unbounded variation.

Proposition 03: Brownian Motion is of unbounded variation

The Brownian Motion is almost surely of unbounded Variation (for all t > 0). Proof: w.l.o.g. t=1 (for \neq 1 use the scaling properties of the Brownian Motion). Let X_t be a Brownian Motion, then:

$$Z_n = \sum_{k=1}^{2^n} |X_{k2^{-n}} - X_{(k-1)2^{-n}}| = \sqrt{2^n} \underbrace{\frac{1}{2^n} \sum_{k=1}^{2^n} |\sqrt{2^n} (X_{k2^{-n}} - X_{(k-1)2^{-n}})|}_{\stackrel{n \to \infty}{\longrightarrow} E[|X_1|] \text{ in probability (law of large numbers)}}$$

The convergence in probability follows from the law of large numbers, because all summands are independent and distributed like $|X_1|$. Therefore $Z_n \to \infty$ in probability. Because of the triangle inequality the random variables Z_n are monotonically increasing thus Z_n converges almost surely to infinity. \Box

Proposition 04: Brownian Motion is of finite quadratic variation

Let $\pi_m : 0 = t_0^m < t_1^m < \cdots < t_m^m = t (m \in \mathbb{N})$ be a partition of [0, t] which mesh size converges to zero. Then:

$$\lim_{m \to \infty} \sum_{k=1}^{m} \left(X_{t_k^m} - X_{t_{k-1}^m} \right)^2 = t, \text{ in probability.}$$

Proof 1:
Define:
$$Z_m = \sum_{k=1}^m (X_{t_k^m} - X_{t_{k-1}^m})^2$$
. Then:
 $E[Z_m] = \sum_{k=1}^m \underbrace{E\left[\left(X_{t_k^m} - X_{t_{k-1}^m}\right)^2\right]}_{=t_k^m - t_{k-1}^m} = t$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへぐ

and

Proof 2:

$$\operatorname{var}(Z_m) = \sum_{k=1}^{m} \underbrace{\operatorname{var}\left(\left(X_{t_k^m} - X_{t_{k-1}^m}\right)^2\right)}_{=\left(t_k^m - t_{k-1}^m\right)^2 \operatorname{var}(X_1^2)}$$

$$\leq \sup_{k=1,...,m} \left(t_k^m - t_{k-1}^m \right) \sum_{k=1}^m \left(t_k^m - t_{k-1}^m \right) \, \operatorname{var} \left(X_1^2 \right) = \, \operatorname{var} \left(X_1^2 \right) t \sup_{k=1,...,m} \left(t_k^m - t_{k-1}^m \right) \\ \stackrel{m \to \infty}{\longrightarrow} 0.$$

The convergence is a consequence of the Tschebyscheff inequality.

<□▶ <□▶ < 三▶ < 三▶ < 三 ● のへで

Remark 04:

- ► One can show: $\lim_{m \to \infty} \sum_{k=1}^{m} \left(X_{t_k^m} X_{t_{k-1}^m} \right)^2 = t$, for almost all $\omega \in \Omega$.
- note that a process may be of finite quadratic variation and its paths be nonetheless almost surely of infinite quadratic variation for every t > 0 (e.g. Brownian Motion)

Literature:

[1] Øksendal, B. (2010) *Stochastic Differential Equations: An Introduction with Applications*. Springer