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Definition 01: Stochastic process

Given a probability space (2, F, P) and a measurable space (E, X), an
E-valued stochastic process is a family of E-valued random variables

Xi : Q — E , indexed by an arbitrary set T (called the index set). That is, a
stochastic process X is a family {X; : t € T} where each X; is an E-valued
random variable on Q. The space E is then called the state space of the
process. When T= N (or T= Ny) or any other countable set, {X;} is said to be
a discrete-time process, and when T= [0, o0), it is called a continuous-time
process. From now on: T = [0,00) and E = R".
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Definition 02: Trajectory

The function (defined on the index set T = [0, oo) and taking values in R"):
t — Xi(w) is called the trajectory (or the sample path) of the stochastic
process X corresponding to the outcome w. So, to every outcome w € Q
corresponds a trajectory of the process which is a function defined on the
index set T and taking values in R".
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Definition 03: (finite-dimensional) distributions

Let (Q2, F, P) be a probability space. The (finite-dimensional) distributions
of the process {X; : t € T} are the measures ..., defined on R™, k =1,
2,..., by

/L[h._‘,tk(ﬁ ><F2><...><Fk) = F’[Xt1 S F1,...,th S Fk] teT; F1,...7 Fyx € B(R")
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Definition 04: Modification

Let (2, F, P) be a probability space, T = [0, o) index setand {X; : t € T},
{Y:: t € T} stochastic processes on (2, F, P). Then we say that X; is a
version (or a modification) of Y3, if

P{w € Q; Xi(w) = Yi(w)}) =1 vt € [0, 00)

Note that if X; is a version of Y, then X; and Y; have the same
finite-dimensional distributions.
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Definition 05: stationary processes

A stochastic process X; is called stationary if X, ..., X;, have the same
distribution for any t,...t, € T.
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Remark 01: Kolmogorov’s extension theorem
For all permutations o, ty, ..., &k € T,k € Nlet vy, ,...4 be probability measures
on R st.

(K1) v, 1y vt (F1 X e X Fie) = ity g (Fo=11y X oo X Flmig)

(K2 Ut ... ;k(F1 X ... X Fk) = Vﬁv~~~vfk7fk+1’---atk+m(F1 X ... X Fk xR"x ... x R")Vm N

Then there exists a probability space (2, F, P) and a stochastic process {X:}
onQ, X;: Q — R st

l/(17_‘_’1k(F1 X ... X Fk) = P[)(t1 € F1,...,th S Fk]

Vvt € T,k € N and all Borel Sets F;
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Construction 1

To construct the stochastic process Brownian Motion it suffices, by the
Kolmogorov extension theorem, to specify a family {v,,...,4 } of probability
measures satisfying (K1) and (K2).

Fix x € R" and define:

.....

1 IIX—yllz) n
EX,y)= —— - exp [ ——HL eR"t>0
Pt X, y) emn? P ( 5 y

, which is the probability density function of the normal distribution.
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Construction 2
If0 < # < ... <k define a measure (compare measure theory) vy,
Rnk by

.....

[t xx0p(t = b x1) Pl ~ e X x0T - dic (1)

Fyx...xFg

w.r.t. Lebesgue measure and the convention [ p(0, x, y)dy = 6x(y).
]Rﬂ
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Construction 3
{w,...1, } satisfies (K1) and (K2), since we extend the defintion to all finite
sequences of #’s by using (K1) and [ p(t, x, y)dy = 1,Vt > 0. So by

RN

Kolmogorov’s theorem there exists a probability space (2, F, P) and a
stochastic process {X:}>0 on € so that the finite-dimensional distributions
are given by (1), s.t.

P(B[1 e F x..x B[k S Fk) =

/ p(t, x, x1)p(ta — t1, X1, x2) - - - P(tk — t—1, Xk—1, Xk )Xy - - - Axx  (2)

Fix...xFg
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Definition 06: Brownian Motion
Such a process is called (a version of) Brownian Motion starting at x € R”,
w.l.o.g. x =0.
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Remark 02: properties of Brownian Motion
(i) P[(Bo=x)] =1
(i) Brownian Motion thus defined ist not unique. There exist several
Quadruples (B, Q, F, P) such that (2) holds.
(iii) 1f B = (B, ..., B™Y is n-dimensional Brownian Motion, then the

1-dimensional processes {B,U)}tzo are independent, 1-dimensional
Brownian Motions.

(iv) Cov(Bi, Bs) = min{s, t} for one-dimensional Brownian Motions. For
n-dimensional Brownian Motion: Cov(B;, Bs) = min{s, t} - E,

(v) The Brownian Motion is also called Wiener Process.
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Definition 06: (almost sure) continuous stochastic processes
A stochastic process {X; : t € T} is almost surely continuous, if
P(Iim)G:XSVSe T) =1.

t—s
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Remark 03: different Definition of Brownian Motion

In the literature we often find a different Definition of the Brownian Motion: Let
(92, F, P) be a probability space and X; a stochastic process on (22, F, P)

(T =[0,00)). Then X; is a Brownian Motion if it satisfies the following four

conditions:
1. {X; : t € T} has independent increments (for any
OS h<b<---< tn:th 7X[1,X13 7X[2,...,X1H7X1n_1 are
independent).
2. Xy, — Xy ~ N, —ty)forany i, € Twithty < &
3. Xo = 0 almost surely
4. the trajectories t — X;(w), t € T, are continuous for any w € Q.

Question: Does our construction from above also satisfies this definition?
Answer: Yes, it does!



Seite 15 Seminar on Stochastic Geometry and its applications | | April 2015

Proposition 01: our construction is a Brownian Motion

Our construction of the Brownian Motion satisfies 1. 2. and 3. from the
definition above.
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Proof 1:

1. Let Y ~ N(u, K) be an n-dimensional gaussian random vector and A be
a (n x n)-Matrix. Then AY ~ N(Au, AKAT). This is a result from the
explicit from of the characteristic function of Y. Now k € N and:

OItoSt1<f2<~“<tk,
Y = (Xes-» Xa)
Z= (Xf(ﬂxﬁ - Xf07 cee 7ka - th 1)T7

1 0 0 ... ... 00
-1 1 0 0 0
a0 -1 1 0 0 o0
0 0 0 0 -1 1

so that Z = AY.
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Proof 2:

Then Z is also gaussian with a covariance matrix which is diagonal. Indeed:
COV(X(t;+1) = X)s Xig) — X(q)) = min{tiyq, fii1}— min{tiyq, 4} —

min{#, i1 }+ min {&, t} = 0 for i # j. Therefore the coordinates of Z are
uncorrelated. Because Z is gaussian distributed, the coordinates are
independent and the increments of X; are independent too.
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Proof:

2.

Let0 < s < t. Then X; — Xs ~ N(0, (t — s)), because Z = AY is
gaussian distributed and E (X;) — E (Xs) = 0 and var(X; — Xs) =
var(X;) — 2 cov(Xs, X;) + var(Xs) =t —2min{s, t} + s=t—s.

. Since X; ~ N(0,t) = Xo ~ N(0,0) = Xo = 0 almost surely.
. We need one more Proposition for this result.
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Remark 04: Kolmogorov’s continuity theorem
Suppose that the process {X;}:>o satisfies the following condition: For all
T > 0 there exist positive constants «, 8, D s.t.

ENX — Xs[|*] < D-[[t=s|""  0<st<T

Then there exists a continuous version of X.
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Proposition 02: continuous version of Brownian Motion
Brownian Motion satisfies Kolmogorov’s condition (3) with a = 4,
D = n(n+2) and 8 = 1, and therefore the Brownian Motion has a
continuous version.



Seite 21
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Proof:

Remember, if
0 if k odd
Z~N 07 2 = E Zk = = K
( O') ( ) Hk {(k_‘])!!.a‘k if k even

B ~ N(0, t)¥i and B’ — B{” ~ N(0, (t — s))Vi. Then:

n n
ElB: — Bs|[1 = >_ El(B - B+ Y E[(BY - BYY(BY — BYY]
i=1 j=1j#i

!
o (=94 n(n—1)(t =) =n(n+2)(t - s)

=n
O

We also notice that the Brownian Motion has a continuous version and

therefore our construction of the Brownian Motion satisfies the definition from

above.
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Example 01: continuity properties of Trajectory

In general the (finite-dimensional) distribution alone does not give all the
information regarding to continuity properties of stochastic processes. To
illustrate that, consider the following example:



Seminar on Stochastic Geometry and its applications | | April 2015

Proof:

Let (2, F, P) = ([0, 0], B, 1) where B denotes the Borel o-Algebra on [0, co)
be a probability space. . is a probability measure on [0, oo), with no single
point mass (3x € [0, 00) : u(x) > 0). Define:

Xi(w) = {1’ ift=w and Yi(w) =0 Y(t,w) € [0,00) x [0,0)

0, otherwise
Let fj € [0,00) and Fy, ..., Fx € B(]|0, o00)) Then:

X, € Fry o Xy € Fid = p(w € [0,00) : Xy () € F1,..0, X3 (w) € Fi) =

1, 0e Fka
= 0,00) : Y, F1,..Y, F) =
{0, otherwise p(w €[0,00) : Yy (w) € F1,., Yy (w) € Fi)

ulYs, € F1,.., Y, € Fil.
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Proof:

Notice that u([0,00) \ {#, ..., &}) = u([0,00)) = 1. Therefore X; and Y; have
the same distributions. Also p(w € [0,0) : Xi(w) = Yi(w)) =1= X;is a
version of Y;. And yet we have that t — Y;(w) is continuous for all w, while

t — Xi(w) is discontinuous for all w.
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Example 02: Sum of Brownian Motions

Let B; be Brownian Motion and fix f > 0. Then B = By+t — Byt >0isa
Brownian Motion.
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Proof: B
We will show that B; satisfies the remark 03:
1. Since B is a Brownian Motion, B; has independent increments.
Therefore B; has independent increments too (Notice:
Bx1 — Bt2 = Bfo+fz — Bzo — Bt0+t1 + B’O = Bt0+12 — Bt0+t1 , which is
independent of By, 1, — B4, Vi1, 2,13 € T).
2. B, — B, ~ N, —t;)forany t;, b € T with t; < b, because
B, — By, = Biy+t, — Biyt, ~ N(0, &2 — 1)

3. By := By+0 — By, = 0 almost surely.

4. Since the trajectories t — Bi(w),t € T, are continuous for any w € Q
t — Bi(w),t € T, are continuous too.
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Example 03: Brownian Motion has stationary increments

Let (C[0, =), B(C[0, =0)), P) be the canonical probability space. The
Brownian motion B; has stationary increments, i.e. that the process
{Bt+n — Bi}rn>0 has the same distribution for all t.

Proof: Since B; := Bi,+t — By, is a Brownian Motion, By .: — By, ~ N(O, t).
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Example 04:

Let (R", B(R"), P) be a probability space, {B; : t € [0, )} n-dimensional
Brownian Motion on (R", B(R"), P) and let K C R" have zero n-dimensional
Lebesgue measure. Then the expected total length of time that B; spends in
K is zero. Proof:

E (]OXK(B,)dt> - /OOE(XK(Bt))dt = /OOP(Bt € K)at

0 0

]

/27rt)2 (/EXP<_|X21’y”2> dy) =0
K

0

=0 (compare measure theory and xx > 0 a.s.)

vx € R", K ¢ R" with K Lebesgue measure zero.
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Definition 07: bounded variation
For t > 0 a function f : [0, t] — R is said to be of bounded variation, if

m
Vf(” = sup{Zf(tk)— f(t—1)] :meN,0=fh < - <lpn= t}

k=1

is finite. Otherwise f is said to be of unbounded variation.
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Proposition 03: Brownian Motion is of unbounded variation

The Brownian Motion is almost surely of unbounded Variation (for all ¢t > 0).
Proof: w.l.o.g. t=1 (for # 1 use the scaling properties of the Brownian Motion).
Let X; be a Brownian Motion, then:

2n
Zn*Z|Xk2n*Xk12n|_ 2n — Z|\/>(Xk2”7X(k Hz—n)l

k=1

"Z23°E[| X4 |] in probability (law of large numbers)

The convergence in probability follows from the law of large numbers ,
because all summands are independent and distributed like | Xi|. Therefore
Z, — oo in probability. Because of the triangle inequality the random variables
Z, are monotonically increasing thus Z, converges almost surely to infinity. O
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Proposition 04: Brownian Motion is of finite quadratic variation
Letmm: 0=t < t{" <--- < t5; = t(m € N) be a partition of [0, {] which
mesh size converges to zero. Then:

m

im > (x,km - x,km_1)2 = ¢, in probability.
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Proof 1:

H . m 2 -
Define: Zp = 3. (xtkm - x,p_1) . Then:

E[Z0] = Zm: E [(x,km _ thmq)z} _t

k=1

==t

and
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Proof 2:

3

var(Zn) = > var <(Xt}r(n _ Xtﬂ1)2>

k=1
:(t[('"ft/z’_1 )2 var(X2)

gks1up (-t 1)2 e — ) var(X1) = var(X1)t sup (t,’("—t,i",1)

=1,..., o k=1,.

m—
=5 0.

The convergence is a consequence of the Tschebyscheff inequality. O
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Remark 04:

m 2
» One can show: lim > (X&T — Xf&"q) =t, foralmost all w € Q.

m—o0 4
» note that a process may be of finite quadratic variation and its paths be

nonetheless almost surely of infinite quadratic variation for every t > 0
(e.g. Brownian Motion)
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