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Conditional Expectation

Let (Ω,F ,P) be a probability space, X : Ω→ Rn be a random
variable, E[|X |] <∞ and H ⊂ F a σ-algebra, then the
conditional expectation of X given H, denoted by E[X |H], is
defined as follows:
Defintion:
E[X |H] is the (a.s. unique) function from Ω to Rn satisfying:

1. E[X |H] is H-measurable
2.

∫
H E[X |H]dP =

∫
H X dP for all H ∈ H
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Example:
Let Ω = {1,2,3,4,5,6} be the set of numbers of a die,
P(Ω) = F and X : Ω→ N be the random variable with
X (ω) = ω (the number of the die). Now we hide the numbers 1
and 6 by covering them. Thus our observations get inaccurate
and our new σ-algebra is H = σ({2} , {3} , {4} , {5} , {1,6}). So
H ⊂ F .
What is happening to X? X is not measurable to H. So we
create an appropriate RV (E[X |H]) s.t.

1. E[X |H] is H-measurable
2. E[E[X |H] · XH ] = E[X · XH ] for all H ∈ H

We define

E[X |H](ω) := X (ω), for ω = 2,3,4,5

E[X |H](ω) := 1+6
2 = 3.5, for ω = 1,6

Obviously E[X |H] satisfies 1. and 2. .



Seite 5 Seminary Martingale | | April 2015

Proof:
We want to show the existence and the a.s. uniqueness of
E[X |H]. Let ν be the intergral of X over a set H:

ν(H) :=
∫

H X dP for all H ∈ H

It is easy to see, that ν is a finite signed measure on H.
Furthermore, it is ∀ H ∈ H, if P(H) = 0, then ν(H) = 0. So ν is
absolutely continuous w.r.t. P|H.
As (Ω,H,P|H) is a σ-finite space, we can apply the theorem of
Radon-Nikodym, which says there is a P|H-unique
H-measurable function F on Ω such that

ν(H) :=
∫

H F dP for all H ∈ H

We define E[X |H] := F and this function is unique w.r.t. to the
measure P|H.
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Now we consider the most important properties of the
conditional expectation:
Theorem:
Suppose Y : Ω→ Rn is another random variable with
E[|Y |] <∞ and let a,b ∈ R. Then
a) E[aX + bY |H] = aE[X |H] + bE[Y |H]
b) E[E[X |H]] = E[X ]
c) E[X |H] = X if X is H−measurable
d) E[X |H] = E[X ] if X is independent of H
e)E[Y · X |H] = Y · E[X |H] if X ,Y ∈ L2 and Y is H−
measurable, where · denotes the usual inner product in Rn
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Proof:
b) Assume H = Ω ∈ H. Then

E[E[X |H] · XH ] =
∫

H E[X |H]dP 2.
=

∫
H X dP = E[X ]

c) As X is H-measurable, X satisfies both 1. and 2. . Because
of that, and the fact that E[X |H] is a.s. unique, we conclude
X = E[X |H].
d) We show, that E[X ] satisfies 1. and 2. . As E[X ] is a constant,
1. is satisfied. If X is independent of H we have for H ∈ H∫

H E[X ]dP = E[X ] · P[H] =
∫

Ω X dP ·
∫

ΩXHdP

=
∫

Ω X · XHdP =
∫

H X dP
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e) We show that Y · E[X |H] satisfies 1. and 2. . As Y and
E[X |H] are both measurable w.r.t. H, we conclude that the
product is also H-measurable. To show property 2., we first
consider Y = XG (H-measurable) for some G ∈ H.
Then for all H ∈ H∫

H Y · E[X |H]dP =
∫

H∩G E[X |H]dP 2.
=

∫
H∩G X dP =

∫
H YX dP

Similarly, we obtain that the result is true if

Y :=
∑m

j=1 cjXGj , where Gj ∈ H.

As we can approximate every H-measurable RV Y by such
simple functions, we proved the statement.
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Theorem:
Let G, H be σ-algebras such that G ⊂ H. Then

E[X |G] = E[E[X |H]|G].

Proof:
If G ∈ G then G ∈ H and therefore

E[E[E[X |H]|G] · XG] =
∫

G E[X |H]dP =
∫

G X dP

Once again, 1. and 2. are satisfied.
Hence E[X |G] = E[E[X |H]|G] by uniqueness.



Seite 10 Seminary Martingale | | April 2015

Theorem: (The Jensen inequality)
If φ : R→ R is convex and E[|φ(X )|] <∞ then

φ(E[X |H]) ≤ E[φ(X )|H]

Corollary:
(i) |E[X |H]| ≤ E[|X ||H]
(ii)|E[X |H]|2 ≤ E[|X |2|H]
Proof:
(i) It is

|E[X |H]| = |E[X + − X−|H]| = |E[X +|H]− E[X−|H]| ≤
E[X +|H] + E[X−|H] = E[|X ||H]

(ii) Define φ : R→ R with φ(x) := x2. Then φ is convex and we
can apply the Jensen inequality on φ(E[X |H]).
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Corollary:
If Xn → X in L2 then E[Xn|H]→ E[X |H] in L2.
Proof:
We have to show:
(1) E[X |H],E[Xn|H] ∈ L2 ∀n
(2) limn→∞ E[(E[Xn|H]− E[X |H])2] = 0
It is

E[(E[Xn|H])2] = E[|E[Xn|H]|2]
(ii)
≤ E[E[|Xn|2|H]] = E[E[X 2

n |H]] =

E[X 2
n ]

Xn∈L2

< ∞

So E[Xn|H] ∈ L2 ∀n. Similarly we obtain that E[X |H] ∈ L2.
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To show (2), we first take a look on

E[(E[Xn|H]− E[X |H])2] = E[(E[Xn − X |H])2]

≤ E[E[(Xn − X )2|H]] = E[(Xn − X )2]

As n was arbitrary, we conclude:

lim
n→∞

E[(E[Xn|H]− E[X |H])2] ≤ lim
n→∞

E[(Xn − X )2] = 0

It is E[(E[Xn|H]− E[X |H])2] ≥ 0 and we follow

lim
n→∞

E[(E[Xn|H]− E[X |H])2] = 0
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Martingales

Let (Ω,N ,P) be a probability space and let {Nt}t≥0 ⊂ N be a
filtration, i.e. {Nt}t≥0 is a family of increasing σ-algebras.
Definition:
A stochastic process {Nt : t ≥ 0} with Nt : Ω→ R is adapted if
Nt is Nt -measurable ∀t ≥ 0.
Defintion:
A stochastic process {Nt : t ≥ 0} is a martingale if

1. Nt is Nt -adapted
2. E[|Nt |] <∞
3. E[Ns|Nt ] = Nt ∀0 ≤ t ≤ s
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Definition:
{Nt : t ≥ 0} is called submartingale if 1. and 2. and
3(a). E[Ns|Nt ] ≥ Nt ∀0 ≤ t < s
X is called supermartingale if 1. and 2. and
3(b). E[Ns|Nt ] ≤ Nt ∀0 ≤ t < s
Example:
Brownian Motion {B(t) : t ≥ 0} is a martingale w.r.t. to the
natural filtration Ft = σ {B(s) : 0 ≤ s ≤ t}.
1. follows by definition and 2. is satisfied as E[B(t)] = 0 for all
t ≥ 0. Furthermore, we have
E[B(t)|Fs] = E[B(s) + (B(t)− B(s))|Fs] =
E[B(s)|Fs] +E [B(t)− B(s)|Fs]︸ ︷︷ ︸

independent

= B(s) +E [B(t)− B(s)]︸ ︷︷ ︸
N(0,t−s)

= B(s)
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Example:
Assume {Nt : t ≥ 0} is a martingale and {|Nt | : t ≥ 0} ∈ L1.
Then {|Nt | : t ≥ 0} is a submartingale.
Proof: Obviously 1. and 2. are satisfied. To show 3(a)., we use
the Jensen inequality.

E[|Ns||Nt ] ≥ |E[Ns|Nt ]| = |Nt | ∀0 ≤ t < s

In conclusion, we obtain that a convex function of a martingale
is a submartingale.
Example:
We consider t ∈ N0 (discrete time). A gambler wins 1$ when a
coin comes up heads and loses 1$ when the coin comes up
tails. Suppose now that the coin comes up heads with
probability p ≤ 1

2 . On average, the gambler loses money and
his fortune over time is a supermartingale.
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As in customary we will assume that each Nt contains all the
null sets of N , that t → Nt (ω) is right continous for a.a. ω and
that {Nt} is right continous, in the sense that Nt =

⋂
s>t Ns for

all t ≥ 0.
Theorem: (Doob’s Martingale convergence theorem 1)
Let Nt be a right continuous supermartingale,
supt>0E[N−t ] <∞ with N−t = max(−Nt ,0). Then

N(ω) = limt→∞Nt (ω)

exists for a.a. ω and E[N−] <∞.
If we assume that Nt (ω) is bounded in L1 for all t, then N(ω) is
finite a.s. .



Seite 17 Seminary Martingale | | April 2015

Example:
Let us take a look on the harmonic series: We know that

∞∑
k=1

1
k

=∞

But what about the following series

∞∑
k=1

ξk

k

where ξk are independent and identically distributed RVs with
P[ξk = +1] = P[ξk = −1] = 1

2?
If we consider the case ξ1 = −1, ξ2 = +1, ξ3 = −1, ... we have∑∞

k=1
ξk
k = −1 + 1

2 −
1
3 + ... <∞ because of the alternating

series test.
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So we assume:
∑∞

k=1
ξk
k <∞.

Proof:
Consider the partial sum Sn :=

∑n
k=1

ξk
k with S0 := 0.

Sn is a martingale w.r.t. σ(ξ1, ...ξn):
1. Sn is σ(ξ1, ...ξn) =: Fn adapted
3. E[Sn|Fn−1] = E[Sn−1 + ξn|Fn−1] =

E[Sn−1|Fn−1︸ ︷︷ ︸
measurable

] + E[ ξn|Fn−1︸ ︷︷ ︸
independent

] = Sn−1 + E[ξn]
E[ξk ]=0

= Sn−1

For property 2., we need to show E[|Sn|] <∞ ∀n ∈ N.
Therefore we prove that Sn is bounded in L2. Then Sn is
bounded in L1 and property 2. is fulfilled.
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Consider:

E[S2
n ] = E[S2

n ]− (E[Sn])2 = Var(Sn)
ξk indep.

=
n∑

k=1

Var [
ξk

k
]

Var [ξk ]=1
=

n∑
k=1

1
k2 <

π2

6
∀n ∈ N

As limn→∞ E[S2
n ] = π2

6 , it also follows that supn∈N E[S2
n ] ≤ π2

6 .
So {Sn}n∈N is bounded in L2

⇒ {Sn}n∈N is bounded in L1

We conclude that 2. property is fullfilled. So Sn is a martingale
and thus also a supermartingale.
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Because of the fact, that {Sn}n∈N is bounded in L1, we can
apply Doob’s martingale covergence theorem⇒ limn→∞ Sn
exists in R a.s.
Notice that if ξk are positive RV with Var(ξk ) = σ for all k ∈ N,
we can achieve the same result.
Definition:
A family C of RV Nt on a probability space is uniformly
integrable (UI) if

lim
K→∞

(sup
t≥0

E[|Nt |X|Nt |>K ]) = 0

Theorem:
If a family C is bounded in Lp(p > 1), then it is UI.
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Theorem: (Doob’s martingale convergence theorem 2)
Let Nt be a right-continuous supermartingale. Then the
following are equivalent:

1. {Nt}t≥0 is uniformly integrable

2. ∃ RV N ∈ L1 s.t. Nt
a.e.,L1

→ N.
Example:
We already know that limn→∞ Sn(ω) = S(ω), where S is a finite
RV. As {Sn}n∈N is L2-bounded, it is UI. With Doob’s martingale
convergence theorem 2 we also obtain that
limn→∞ E[|Sn − S|] = 0.
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Thank you for your attention
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