

ulm university universität **UUUIM**

Seminar Martingale

<ロ> (四) (四) (三) (三)

Mario Guth | April 2015 | Geometric stochastic

Index

Conditional Expectation

Martingales

References

Conditional Expectation

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $X : \Omega \to \mathbb{R}^n$ be a random variable, $\mathbb{E}[|X|] < \infty$ and $\mathcal{H} \subset \mathcal{F}$ a σ -algebra, then the *conditional expectation of X given* \mathcal{H} , denoted by $\mathbb{E}[X|\mathcal{H}]$, is defined as follows:

<u>Defintion:</u>

 $\mathbb{E}[X|\mathcal{H}]$ is the (a.s. unique) function from Ω to \mathbb{R}^n satisfying:

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

1. $\mathbb{E}[X|\mathcal{H}]$ is \mathcal{H} -measurable

2.
$$\int_H \mathbb{E}[X|\mathcal{H}] d\mathbb{P} = \int_H X d\mathbb{P}$$
 for all $H \in \mathcal{H}$

Example:

Let $\Omega = \{1, 2, 3, 4, 5, 6\}$ be the set of numbers of a die, $\mathcal{P}(\Omega) = \mathcal{F}$ and $X : \Omega \to \mathbb{N}$ be the random variable with $X(\omega) = \omega$ (the number of the die). Now we hide the numbers 1 and 6 by covering them. Thus our observations get inaccurate and our new σ -algebra is $\mathcal{H} = \sigma(\{2\}, \{3\}, \{4\}, \{5\}, \{1, 6\})$. So $\mathcal{H} \subset \mathcal{F}$.

What is happening to *X*? X is not measurable to \mathcal{H} . So we create an appropriate RV ($\mathbb{E}[X|\mathcal{H}]$) s.t.

- 1. $\mathbb{E}[X|\mathcal{H}]$ is \mathcal{H} -measurable
- 2. $\mathbb{E}[\mathbb{E}[X|\mathcal{H}] \cdot \mathcal{X}_H] = \mathbb{E}[X \cdot \mathcal{X}_H]$ for all $H \in \mathcal{H}$

We define

$$\mathbb{E}[X|\mathcal{H}](\omega) := X(\omega), \text{ for } \omega = 2, 3, 4, 5$$
$$\mathbb{E}[X|\mathcal{H}](\omega) := \frac{1+6}{2} = 3.5, \text{ for } \omega = 1, 6$$

Obviously $\mathbb{E}[X|\mathcal{H}]$ satisfies 1. and 2. .

Proof:

We want to show the existence and the a.s. uniqueness of $\mathbb{E}[X|\mathcal{H}]$. Let ν be the intergral of X over a set H:

$$u(H) := \int_H X \, d\mathbb{P}$$
 for all $H \in \mathcal{H}$

It is easy to see, that ν is a finite signed measure on \mathcal{H} . Furthermore, it is $\forall H \in \mathcal{H}$, if $\mathbb{P}(H) = 0$, then $\nu(H) = 0$. So ν is absolutely continuous w.r.t. $\mathbb{P}|\mathcal{H}$.

As $(\Omega, \mathcal{H}, \mathbb{P}|\mathcal{H})$ is a σ -finite space, we can apply the theorem of Radon-Nikodym, which says there is a $P|\mathcal{H}$ -unique \mathcal{H} -measurable function F on Ω such that

$$u(H) := \int_H F \, d\mathbb{P}$$
 for all $H \in \mathcal{H}$

We define $\mathbb{E}[X|\mathcal{H}] := F$ and this function is unique w.r.t. to the measure $P|\mathcal{H}$.

Now we consider the most important properties of the conditional expectation:

Theorem:

Suppose $Y : \Omega \to \mathbb{R}^n$ is another random variable with $\mathbb{E}[|Y|] < \infty$ and let $a, b \in \mathbb{R}$. Then $a) \mathbb{E}[aX + bY|\mathcal{H}] = a\mathbb{E}[X|\mathcal{H}] + b\mathbb{E}[Y|\mathcal{H}]$ $b) \mathbb{E}[\mathbb{E}[X|\mathcal{H}]] = \mathbb{E}[X]$ $c) \mathbb{E}[X|\mathcal{H}] = X$ if X is \mathcal{H} – measurable $d) \mathbb{E}[X|\mathcal{H}] = \mathbb{E}[X]$ if X is independent of \mathcal{H} $e)\mathbb{E}[Y \cdot X|\mathcal{H}] = Y \cdot \mathbb{E}[X|\mathcal{H}]$ if $X, Y \in \mathcal{L}^2$ and Y is \mathcal{H} – measurable, where \cdot denotes the usual inner product in \mathbb{R}^n

Proof:

b) Assume $H = \Omega \in \mathcal{H}$. Then

$$\mathbb{E}[\mathbb{E}[X|\mathcal{H}] \cdot \mathcal{X}_{H}] = \int_{H} \mathbb{E}[X|\mathcal{H}] d\mathbb{P} \stackrel{2}{=} \int_{H} X d\mathbb{P} = \mathbb{E}[X]$$

- c) As X is \mathcal{H} -measurable, X satisfies both 1. and 2. . Because of that, and the fact that $\mathbb{E}[X|\mathcal{H}]$ is a.s. unique, we conclude $X = \mathbb{E}[X|\mathcal{H}]$.
- d) We show, that $\mathbb{E}[X]$ satisfies 1. and 2. . As $\mathbb{E}[X]$ is a constant, 1. is satisfied. If X is independent of \mathcal{H} we have for $H \in \mathcal{H}$

$$\int_{H} \mathbb{E}[X] d\mathbb{P} = \mathbb{E}[X] \cdot \mathbb{P}[H] = \int_{\Omega} X \ d\mathbb{P} \cdot \int_{\Omega} \mathcal{X}_{H} d\mathbb{P}$$
$$= \int_{\Omega} X \cdot \mathcal{X}_{H} d\mathbb{P} = \int_{H} X \ d\mathbb{P}$$

e) We show that $Y \cdot \mathbb{E}[X|\mathcal{H}]$ satisfies 1. and 2. . As Y and $\mathbb{E}[X|\mathcal{H}]$ are both measurable w.r.t. \mathcal{H} , we conclude that the product is also \mathcal{H} -measurable. To show property 2., we first consider $Y = \mathcal{X}_G$ (\mathcal{H} -measurable) for some $G \in \mathcal{H}$. Then for all $H \in \mathcal{H}$

$$\int_{H} Y \cdot \mathbb{E}[X|H] d\mathbb{P} = \int_{H \cap G} \mathbb{E}[X|H] d\mathbb{P} \stackrel{2.}{=} \int_{H \cap G} X d\mathbb{P} = \int_{H} YX d\mathbb{P}$$

Similarly, we obtain that the result is true if

$$Y := \sum_{j=1}^{m} c_j \mathcal{X}_{G_j}$$
, where $G_j \in \mathcal{H}$.

As we can approximate every \mathcal{H} -measurable RV Y by such simple functions, we proved the statement.

<u>Theorem:</u> Let \mathcal{G} , \mathcal{H} be σ -algebras such that $\mathcal{G} \subset \mathcal{H}$. Then

 $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[\mathbb{E}[X|\mathcal{H}]|\mathcal{G}].$

Proof:

If $G \in \mathcal{G}$ then $G \in \mathcal{H}$ and therefore

 $\mathbb{E}[\mathbb{E}[\mathbb{E}[X|\mathcal{H}]|\mathcal{G}] \cdot \mathcal{X}_{G}] = \int_{G} \mathbb{E}[X|\mathcal{H}] d\mathbb{P} = \int_{G} X d\mathbb{P}$

Once again, 1. and 2. are satisfied. Hence $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[\mathbb{E}[X|\mathcal{H}]|\mathcal{G}]$ by uniqueness.

<u>Theorem:</u> (The Jensen inequality) If $\phi : \mathbb{R} \to \mathbb{R}$ is convex and $\mathbb{E}[|\phi(X)|] < \infty$ then

 $\phi(\mathbb{E}[X|\mathcal{H}]) \leq \mathbb{E}[\phi(X)|\mathcal{H}]$

 $\begin{array}{l} \hline \hline Corollary:\\ \hline \hline (i) |\mathbb{E}[X|\mathcal{H}]| \leq \mathbb{E}[|X||\mathcal{H}]\\ \hline (ii)|\mathbb{E}[X|\mathcal{H}]|^2 \leq \mathbb{E}[|X|^2|\mathcal{H}]\\ \hline \underline{Proof:}\\ \hline (i) \text{ It is} \end{array}$

$$|\mathbb{E}[X|\mathcal{H}]| = |\mathbb{E}[X^+ - X^-|\mathcal{H}]| = |\mathbb{E}[X^+|\mathcal{H}] - \mathbb{E}[X^-|\mathcal{H}]| \le \mathbb{E}[X^+|\mathcal{H}] + \mathbb{E}[X^-|\mathcal{H}] = \mathbb{E}[|X||\mathcal{H}]$$

(ii) Define $\phi : \mathbb{R} \to \mathbb{R}$ with $\phi(x) := x^2$. Then ϕ is convex and we can apply the Jensen inequality on $\phi(\mathbb{E}[X|\mathcal{H}])$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

 $\begin{array}{l} \underline{Corollary:}\\ \hline If X_n \to X \text{ in } L^2 \text{ then } \mathbb{E}[X_n|\mathcal{H}] \to \mathbb{E}[X|\mathcal{H}] \text{ in } L^2.\\ \underline{Proof:}\\ \hline We \text{ have to show:}\\ (1) \mathbb{E}[X|\mathcal{H}], \mathbb{E}[X_n|\mathcal{H}] \in L^2 \forall n\\ (2) \lim_{n \to \infty} \mathbb{E}[(\mathbb{E}[X_n|\mathcal{H}] - \mathbb{E}[X|\mathcal{H}])^2] = 0\\ \hline It \text{ is} \end{array}$

$$\mathbb{E}[(\mathbb{E}[X_n|\mathcal{H}])^2] = \mathbb{E}[|\mathbb{E}[X_n|\mathcal{H}]|^2] \stackrel{(ii)}{\leq} \mathbb{E}[\mathbb{E}[|X_n|^2|\mathcal{H}]] = \mathbb{E}[\mathbb{E}[X_n^2|\mathcal{H}]] = \mathbb{E}[X_n^2] \stackrel{X_n \in L^2}{<} \infty$$

So $\mathbb{E}[X_n|\mathcal{H}] \in L^2 \ \forall n$. Similarly we obtain that $\mathbb{E}[X|\mathcal{H}] \in L^2$.

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ― 国 - のへぐ

To show (2), we first take a look on

$$\mathbb{E}[(\mathbb{E}[X_n|\mathcal{H}] - \mathbb{E}[X|\mathcal{H}])^2] = \mathbb{E}[(\mathbb{E}[X_n - X|\mathcal{H}])^2]$$
$$\leq \mathbb{E}[\mathbb{E}[(X_n - X)^2|\mathcal{H}]] = \mathbb{E}[(X_n - X)^2]$$

As n was arbitrary, we conclude:

$$\lim_{n\to\infty}\mathbb{E}[(\mathbb{E}[X_n|\mathcal{H}]-\mathbb{E}[X|\mathcal{H}])^2]\leq \lim_{n\to\infty}\mathbb{E}[(X_n-X)^2]=0$$

It is $\mathbb{E}[(\mathbb{E}[X_n|\mathcal{H}] - \mathbb{E}[X|\mathcal{H}])^2] \ge 0$ and we follow

$$\lim_{n\to\infty}\mathbb{E}[(\mathbb{E}[X_n|\mathcal{H}]-\mathbb{E}[X|\mathcal{H}])^2]=0$$

・ロト・(型ト・(ヨト・(ヨト)) ヨー うへつ

Martingales

Let $(\Omega, \mathcal{N}, \mathbb{P})$ be a probability space and let $\{\mathcal{N}_t\}_{t\geq 0} \subset \mathcal{N}$ be a filtration, i.e. $\{\mathcal{N}_t\}_{t\geq 0}$ is a family of increasing σ -algebras. *Definition:*

A stochastic process $\{N_t : t \ge 0\}$ with $N_t : \Omega \to \mathbb{R}$ is adapted if N_t is \mathcal{N}_t -measurable $\forall t \ge 0$.

Defintion:

A stochastic process $\{N_t : t \ge 0\}$ is a martingale if

- 1. N_t is \mathcal{N}_t -adapted
- 2. $\mathbb{E}[|N_t|] < \infty$
- 3. $\mathbb{E}[N_s|\mathcal{N}_t] = N_t \ \forall 0 \le t \le s$

Definition:

 $\{N_t : t \ge 0\} \text{ is called submartingale if 1. and 2. and } \\ 3(a). \mathbb{E}[N_s | \mathcal{N}_t] \ge N_t \ \forall 0 \le t < s \\ X \text{ is called supermartingale if 1. and 2. and } \\ 3(b). \mathbb{E}[N_s | \mathcal{N}_t] \le N_t \ \forall 0 \le t < s \\ \underline{Example:} \\ \end{array}$

Brownian Motion $\{B(t) : t \ge 0\}$ is a martingale w.r.t. to the natural filtration $\mathcal{F}_t = \sigma \{B(s) : 0 \le s \le t\}$.

1. follows by definition and 2. is satisfied as $\mathbb{E}[B(t)] = 0$ for all $t \ge 0$. Furthermore, we have $\mathbb{E}[B(t)|\mathcal{F}_s] = \mathbb{E}[B(s) + (B(t) - B(s))|\mathcal{F}_s] = \mathbb{E}[B(s)|\mathcal{F}_s] + \mathbb{E}[\underline{B(t) - B(s)}] = B(s) + \mathbb{E}[\underline{B(t) - B(s)}] = B(s)$

independent

Example:

Assume $\{N_t : t \ge 0\}$ is a martingale and $\{|N_t| : t \ge 0\} \in L^1$. Then $\{|N_t| : t \ge 0\}$ is a submartingale. Proof: Obviously 1. and 2. are satisfied. To show 3(a)., we use the Jensen inequality.

 $\mathbb{E}[|N_s||\mathcal{N}_t] \ge |\mathbb{E}[N_s|\mathcal{N}_t]| = |N_t| \ \forall 0 \le t < s$

In conclusion, we obtain that a convex function of a martingale is a submartingale.

Example:

We consider $t \in \mathbb{N}_0$ (discrete time). A gambler wins 1\$ when a coin comes up heads and loses 1\$ when the coin comes up tails. Suppose now that the coin comes up heads with probability $p \leq \frac{1}{2}$. On average, the gambler loses money and his fortune over time is a supermartingale.

As in customary we will assume that each \mathcal{N}_t contains all the null sets of \mathcal{N} , that $t \to N_t(\omega)$ is right continous for a.a. ω and that $\{\mathcal{N}_t\}$ is right continous, in the sense that $\mathcal{N}_t = \bigcap_{s>t} \mathcal{N}_s$ for all $t \ge 0$.

<u>Theorem</u>: (Doob's Martingale convergence theorem 1) Let N_t be a right continuous supermartingale, $sup_{t>0}\mathbb{E}[N_t^-] < \infty$ with $N_t^- = max(-N_t, 0)$. Then

 $N(\omega) = \lim_{t\to\infty} N_t(\omega)$

exists for a.a. ω and $\mathbb{E}[N^{-}] < \infty$.

If we assume that $N_t(\omega)$ is bounded in L^1 for all t, then $N(\omega)$ is finite a.s. .

Example: Let us take a look on the harmonic series: We know that

$$\sum_{k=1}^{\infty} \frac{1}{k} = \infty$$

But what about the following series

$$\sum_{k=1}^{\infty} \frac{\xi_k}{k}$$

where ξ_k are independent and identically distributed RVs with $\mathbb{P}[\xi_k = +1] = \mathbb{P}[\xi_k = -1] = \frac{1}{2}$? If we consider the case $\xi_1 = -1$, $\xi_2 = +1$, $\xi_3 = -1$, ... we have $\sum_{k=1}^{\infty} \frac{\xi_k}{k} = -1 + \frac{1}{2} - \frac{1}{3} + ... < \infty$ because of the alternating series test.

So we assume: $\sum_{k=1}^{\infty} \frac{\xi_k}{k} < \infty$. Proof: Consider the partial sum $S_n := \sum_{k=1}^n \frac{\xi_k}{k}$ with $S_0 := 0$. S_n is a martingale w.r.t. $\sigma(\xi_1, \dots, \xi_n)$: 1. S_n is $\sigma(\xi_1, \dots, \xi_n) =: \mathcal{F}_n$ adapted 3. $\mathbb{E}[S_n | \mathcal{F}_{n-1}] = \mathbb{E}[S_{n-1} + \xi_n | \mathcal{F}_{n-1}] =$ $\mathbb{E}[\underbrace{S_{n-1}|\mathcal{F}_{n-1}}] + \mathbb{E}[\underbrace{\xi_n|\mathcal{F}_{n-1}}] = S_{n-1} + \mathbb{E}[\xi_n] \stackrel{\mathbb{E}[\xi_k]=0}{=} S_{n-1}$ measurable independent For property 2., we need to show $\mathbb{E}[|S_n|] < \infty \ \forall n \in \mathbb{N}$. Therefore we prove that S_n is bounded in L^2 . Then S_n is bounded in L^1 and property 2. is fulfilled.

◆□ > ◆□ > ◆豆 > ◆豆 > ・ 豆 ・ � Q Q Q

Consider:

$$\mathbb{E}[S_n^2] = \mathbb{E}[S_n^2] - (\mathbb{E}[S_n])^2 = Var(S_n) \stackrel{\xi_k \text{ indep.}}{=} \sum_{k=1}^n Var[\frac{\xi_k}{k}]$$
$$\stackrel{Var[\underline{\xi_k}]=1}{=} \sum_{k=1}^n \frac{1}{k^2} < \frac{\pi^2}{6} \ \forall n \in \mathbb{N}$$

As $\lim_{n\to\infty} \mathbb{E}[S_n^2] = \frac{\pi^2}{6}$, it also follows that $\sup_{n\in\mathbb{N}} \mathbb{E}[S_n^2] \le \frac{\pi^2}{6}$. So $\{S_n\}_{n\in\mathbb{N}}$ is bounded in L^2 $\Rightarrow \{S_n\}_{n\in\mathbb{N}}$ is bounded in L^1 We conclude that 2. property is fullfilled. So S_n is a martingale and thus also a supermartingale. Because of the fact, that $\{S_n\}_{n\in\mathbb{N}}$ is bounded in L^1 , we can apply Doob's martingale covergence theorem $\Rightarrow \lim_{n\to\infty} S_n$ exists in \mathbb{R} a.s.

Notice that if ξ_k are positive RV with $Var(\xi_k) = \sigma$ for all $k \in \mathbb{N}$, we can achieve the same result.

Definition:

A family C of RV N_t on a probability space is uniformly integrable (UI) if

$$\lim_{K\to\infty}(\sup_{t\geq 0}\mathbb{E}[|N_t|\mathcal{X}_{|N_t|>K}])=0$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

Theorem:

If a family C is bounded in $L^p(p > 1)$, then it is UI.

<u>Theorem:</u> (Doob's martingale convergence theorem 2) Let N_t be a right-continuous supermartingale. Then the following are equivalent:

1. $\{N_t\}_{t>0}$ is uniformly integrable

2.
$$\exists RV N \in L_1 \text{ s.t. } N_t \stackrel{a.e.,L^1}{\rightarrow} N.$$

Example:

We already know that $\lim_{n\to\infty} S_n(\omega) = S(\omega)$, where *S* is a finite RV. As $\{S_n\}_{n\in\mathbb{N}}$ is L^2 -bounded, it is UI. With Doob's martingale convergence theorem 2 we also obtain that $\lim_{n\to\infty} \mathbb{E}[|S_n - S|] = 0.$

References

- 1. Seminar papers; Appendix B: Conditional Expectation, Appendix C: Uniform integrability and Martingale convergence
- 2. Davar Khoshnevisan: American Mathematical Society, 2007, p. 134 et seq
- Wikipedia-The Free Encyclopedia, en.wikipedia.org/wiki/Doob's_martingale_convergence_theorems, 17.04.2015
- 4. Zakhar Kabluchko: Stochastic Processes (Stochastik 2), 29.05.2014

Thank you for your attention

(ロ) (型) (E) (E) E のQC