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Conditional Expectation

Let (22, F,P) be a probability space, X : 2 — R" be a random
variable, E[|X|] < co and H C F a o-algebra, then the
conditional expectation of X given H, denoted by E[X|H], is
defined as follows:

Defintion:

E[X|H] is the (a.s. unique) function from Q to R" satisfying:

1. E[X|#] is H-measurable
2. [LE[X|H]dP = [, X dP for all H € H
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Example:
Let Q@ = {1,2,3,4,5,6} be the set of numbers of a die,
P(Q2) = Fand X : Q — N be the random variable with
X(w) = w (the number of the die). Now we hide the numbers 1
and 6 by covering them. Thus our observations get inaccurate
and our new c-algebrais H = o({2},{3},{4},{5},{1,6}). So
HCF.
What is happening to X? X is not measurable to H. So we
create an appropriate RV (E[X|#]) s.t.
1. E[X|H] is H-measurable
2. E[E[X|H] - Xy] =E[X - Xy]forall H e H
We define
E[X|H](w) := X(w), forw=2,3,4,5
E[X|H](w) := % =35, forw=1,6

Obviously E[X|#] satisfies 1. and 2. .
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Proof:
We want to show the existence and the a.s. uniqueness of
E[X|#]. Let v be the intergral of X over a set H:

v(H) = [, X dPforall H €

It is easy to see, that v is a finite signed measure on H.
Furthermore, itisV H € H, if P(H) =0, then v(H) = 0. So v is
absolutely continuous w.r.t. P|H.

As (2, H,P|H) is a o-finite space, we can apply the theorem of
Radon-Nikodym, which says there is a P|H-unique
‘H-measurable function F on Q such that

v(H):= [ FdPforall H € H

We define E[X|H] := F and this function is unique w.r.t. to the
measure P|H.
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Now we consider the most important properties of the
conditional expectation:

Theorem:

Suppose Y : Q — R" is another random variable with
E[|Y|] < oo and let a,b € R. Then

a) ElaX + bY|H] = aE[X|H] + bE[Y|#]

b) E[E[X|#]] = E[X]

c) E[X|H] = X if X is H — measurable

d) E[X|H] = E[X] if X is independent of H

eE[Y -X|H] =Y -E[X|H]ifX,YeL?and Y isH—
measurable, where - denotes the usual inner product in R"
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Proof:
b) Assume H = Q € H. Then

E[E[X|H] - Xu] = [, EIX[H]dP 2 [, X dP = E[X]

c) As X is H-measurable, X satisfies both 1. and 2. . Because
of that, and the fact that E[X|#] is a.s. unique, we conclude

X = E[X|H].

d) We show, that E[X] satisfies 1. and 2. . As E[X] is a constant,
1. is satisfied. If X is independent of # we have for H € H

[, E[X]dP = E[X] - P[H] = [, X dP - [,, XndP

— fo X - XndP = [, X dP
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e) We show that Y - E[X|H] satisfies 1. and 2. . As Y and
E[X|#] are both measurable w.r.t. #, we conclude that the
product is also H-measurable. To show property 2., we first
consider Y = X5 (H-measurable) for some G € H.
Thenforall H e H

JnY -EIX|HP = [, cEIX|H|dP & [, o X dP = [, YX dP
Similarly, we obtain that the result is true if
Y =31, ¢Xg, where G; € H.

As we can approximate every H-measurable RV Y by such
simple functions, we proved the statement.
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Theorem:
Let G, H be o-algebras such that G C ‘H. Then

E[X|G] = E[E[X|H]|F].

Proof:
If G € G then G € ‘H and therefore

E[E[E[X|H]|G] - Xg] = [ E[X|H]dP = [5 X dP

Once again, 1. and 2. are satisfied.
Hence E[X|G] = E[E[X|#]|G] by uniqueness.
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Theorem: (The Jensen inequality)

If $: R — R is convex and E[|¢(X)|] < oo then
P(E[X|H]) < E[¢(X)[H]

Corollary:

(i) [E[X|H]| < E[|X][#]

(i) [E[X|H][* < E[|X[?|H]
Proof:
(i) Itis
[E[X|H]| = [E[XT — X~ [H]| = [E[XT|H] - E[X™|H]| <
E[XT|H] + E[X™[H] = E[|X]|H]

(i) Define ¢ : R — R with ¢(x) := x2. Then ¢ is convex and we
can apply the Jensen inequality on ¢(E[X|H]).
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Corollary:
If Xp — X in L? then E[Xp|H] — E[X|H] in L.
Proof:
We have to show:
(1) E[X|H],E[Xn|H] € L2 Vn
(2) limpo0 E[(E[Xa|H] — E[X|H])?] = O
It is
(if)
E[(E[Xn|#H])?] = E[[E[Xn|H][?] < EEE[IXnIZIH]] = E[E[XF|H]] =
E[X2] XHEL 00

So E[X,|H] € L? Vn. Similarly we obtain that E[X|H] € L2.
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To show (2), we first take a look on

E[(E[Xa|H] — E[X|H])?] = E[(E[X, — X|H])?]
< E[E[(Xn — X)?|H]] = E[(Xn — X)?]

As n was arbitrary, we conclude:
lim E[(E[X,|#] — EIX[H])?] < lim E[(X, - X)?] =0
Itis E[(E[Xn|H] — E[X|H])?] > 0 and we follow

lim E[(E[Xs|H] — E[X|H])?] = 0
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Martingales

Let (2, V,P) be a probability space and let {Nt} o, C NV be a
filtration, i.e. {N},- is a family of increasing o-algebras.
Definition: -
A stochastic process {N; : t > 0} with N; : Q — R is adapted if
N; is Ny-measurable Vvt > 0.
Defintion:
A stochastic process {N; : t > 0} is a martingale if

1. N is Ni-adapted

2. E[|Nt]] < o0

3. E[Ns|V{] = N VO < t < s
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Definition:

{N; : t > 0} is called submartingale if 1. and 2. and
3(@). E[Ns|N{] > N; VO < t<s

X'is called supermartingale if 1. and 2. and

3(b). E[Ns|NV;] < NtVO < t<s

Example:

Brownian Motion {B(t) : t > 0} is a martingale w.r.t. to the

natural filtration 7 = o {B(s) : 0 < s < t}.

1. follows by definition and 2. is satisfied as E[B(t)] = 0 for all

t > 0. Furthermore, we have

E[B(1)|Fs] = E[B(s) + (B(t) — B(s))|Fs] =

E[B(s)|Fs] + E [B(t) — B(s)|Fs] = B(s) + E[B(t) — B(s)] = B(s)
N —

independent N(0,t—s)
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Example:

Assume {N; : t > 0} is a martingale and {|N;| : t > 0} € L.
Then {|N;| : t > 0} is a submartingale.

Proof: Obviously 1. and 2. are satisfied. To show 3(a)., we use
the Jensen inequality.

E[[Ns|INt] = [E[Ns|MVi]| = [Ne| VO < t < s

In conclusion, we obtain that a convex function of a martingale
is a submartingale.

Example:

We consider t € Ny (discrete time). A gambler wins 1$ when a
coin comes up heads and loses 1$ when the coin comes up
tails. Suppose now that the coin comes up heads with
probability p < % On average, the gambler loses money and
his fortune over time is a supermartingale.
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As in customary we will assume that each N; contains all the
null sets of NV, that t — Ni(w) is right continous for a.a. w and
that {\V¢} is right continous, in the sense that Ny = (. ; Ns for
allt>0.

Theorem: (Doob’s Martingale convergence theorem 1)

Let N; be a right continuous supermartingale,

supi=oE[N; ] < co with N; = max(—N,0). Then

N(w) = iMoo Nt(w)

exists for a.a. w and E[N~] < oc.
If we assume that Ny(w) is bounded in L' for all t, then N(w) is
finite a.s. .



Seminary Martingale April 2015

Example:
Let us take a look on the harmonic series: We know that

But what about the following series
3 &
k=1 k
where ¢, are independent and identically distributed RVs with
Plék = +1] = P[¢x = —1] = }7?
If we consider the case &1 = —1, & = +1, &= —1,... we have

Sy % =-1+% 1+ .. < ocobecause of the alternating
series test.
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So we assume: Y52 & < oc.
Proof:
Consider the partial sum S, := S°7_; % with Sy := 0.
Sy is a martingale w.r.t. o(&1, ...¢n):
1. Spiso(&,...&n) =: Fp adapted
3. E[Sn’]:n—d = IE[Sn—1 + §n|]:n—1] =
E[¢d]=0

IE"[Sn—1 ‘-’rn—1] + E[ §n’]:n—1 ] - Sn—1 +E[§n] - Sn—1
SN——— N——

measurable independent
For property 2., we need to show E[|Sy|] < co Vn € N.

Therefore we prove that S, is bounded in L2. Then S, is
bounded in L' and property 2. is fulfilled.
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Consider:

E[S2] = E[SE] - (E[SA])? = Var(Sy) =% ;_31 var(f]

Var[gx]=1 T e

SkI= <

= 2 < 6 vneN
k=1

As limp o E[S2] = %2, it also follows that sup,,.y E[S2] < %2

So {Sn} ey is bounded in L2

= {Sn} ey is bounded in L

We conclude that 2. property is fullfilled. So S, is a martingale

and thus also a supermartingale.
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Because of the fact, that { Sy}, is bounded in L', we can
apply Doob’s martingale covergence theorem = lim,_, . Sp
exists in R a.s.

Notice that if ¢, are positive RV with Var(¢x) = o for all k € N,
we can achieve the same result.

Definition:

A family C of RV N; on a probability space is uniformly
integrable (Ul) if

lim (SU(F))E[!Nt\X|N,|>K]) =0

K—o0 tZ

Theorem:
If a family C is bounded in LP(p > 1), then it is UI.
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Theorem: (Doob’s martingale convergence theorem 2)

Let N; be a right-continuous supermartingale. Then the
following are equivalent:
1. {Nt} > is uniformly integrable

1
o JRVNe Ly st N 285 N.

Example:

We already know that lim,_,., Sp(w) = S(w), where S is a finite
RV. As {Sp},cy is L?-bounded, it is Ul. With Doob’s martingale
convergence theorem 2 we also obtain that

im0 E[|Sh — S]] = 0.
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Thank you for your attention
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