

The Itô Formula
Proof and Applications
Niklas Teipel | May 20, 2015 | Seminar on Stochastic Geometry and its Application

Overview

Introduction

Itô Process

Itô's Formula

Applications

Introduction

Using the definition is not very useful to evaluate a given integral (similar to Riemann integrals).

Remember, in order to show that

$$
\int_{0}^{t} B_{s} d B_{s}=\frac{1}{2} B_{t}^{2}-\frac{1}{2} t
$$

we had to find elementary functions f_{n} such that

$$
\int_{0}^{t} f_{n}(t, \omega) d B_{t}(\omega) \rightarrow \int_{0}^{t} B_{s} d B_{s}
$$

Definition

Let $\mathcal{V}:=\mathcal{V}(S, T)$ be the class of functions

$$
f(t, \omega):[0, \infty) \times \Omega \rightarrow \mathbb{R}
$$

1. $(t, \omega) \rightarrow f(t, \omega)$ is $\mathcal{B} \times \mathcal{F}$-measurable, where \mathcal{B} denotes the Borel σ-algebra on $[0, \infty)$.
2. $f(t, \omega)$ is \mathcal{F}_{t}-adapted.
3. $\mathbb{E}\left[\int_{S}^{T} f(t, \omega)^{2} d t\right]<\infty$.

Definition

Let B_{t} be the 1-dimensional Brownian motion on (Ω, \mathcal{F}, P). An Itô process is a stochastic process X_{t} on (Ω, \mathcal{F}, P) of the form

$$
X_{t}=X_{0}+\int_{0}^{t} u(s, \omega) d s+\int_{0}^{t} v(s, \omega) d B_{s}
$$

where $u, v \in \mathcal{V}$.

Theorem

Let X_{t} be an Itô process given by

$$
X_{t}=X_{0}+\int_{0}^{t} u(s, \omega) d s+\int_{0}^{t} v(s, \omega) d B_{s}
$$

Let $g(t, x) \in C^{2}([0, \infty) \times \mathbb{R})$. Then

$$
Y_{t}=g\left(t, X_{t}\right)
$$

is again an Itô process, and

$$
\begin{aligned}
Y_{t}= & Y_{0}+\int_{0}^{t} g_{1}\left(s, X_{s}\right)+g_{2}\left(s, X_{s}\right) \cdot u(s, \omega)+\frac{1}{2} g_{22}\left(s, X_{s}\right) \cdot v^{2}(s, \omega) d s \\
& +\int_{0}^{t} g_{2}\left(s, X_{s}\right) \cdot v(s, \omega) d B_{s},
\end{aligned}
$$

where $g_{1}:=\frac{\partial g}{\partial t}, g_{2}:=\frac{\partial g}{\partial x}, g_{22}:=\frac{\partial^{2} g}{\partial x^{2}},\left(g_{12}=g_{21}:=\frac{\partial^{2} g}{\partial t \partial x}\right.$ and $\left.g_{11}:=\frac{\partial^{2} g}{\partial t^{2}}\right)$.

Example

Let B_{t} be the 1-dimensional Brownian motion on (Ω, \mathcal{F}, P) and consider the Itô integral

$$
I=\int_{0}^{t} B_{s} d B_{s}
$$

from the introduction.

Example

Let B_{t} be the 1-dimensional Brownian motion on (Ω, \mathcal{F}, P) and consider

$$
\int_{0}^{t} s d B_{s}
$$

Theorem

Suppose $f(s, \omega)=f(s)$ (e.g. f is deterministic) and f $\in \mathcal{C}^{2}[0, t]$. Then

$$
\int_{0}^{t} f(s) d B_{s}=f(t) B_{t}-\int_{0}^{t} f^{\prime}(s) B_{s} d s
$$

References

Øksendal, B. (2003). Stochastic differential equations (pp. 43-48). Springer Berlin Heidelberg.

Steele, J. M. (2001). Stochastic calculus and financial applications (Vol. 45). SpringerScience \& Business Media.

