

Some properties of the Itô integral

Qiannan Gao | 11. Mai 2015 |

Key words

Basic properties of the Itô integral

Brownian Motion - martingale

Itô integral - t continuous

L

Basic properties of the Itô integral
Let
$$f, g \in \nu(0, T)$$
 and let $0 \leq S < U < T$. Then
(i) $\int_{S}^{T} f dB_t = \int_{S}^{U} f dB_t + \int_{U}^{T} f dB_t$ for a.a. ω
(ii) $\int_{S}^{T} (cf + g) dB_t = c \cdot \int_{S}^{T} f dB_t + \int_{S}^{T} g dB_t$ (c constant)
(iii) $E[\int_{S}^{T} f dB_t] = 0$
(iv) $\int_{S}^{T} f dB_t$ is \mathcal{F}_T measurable.

(i)
$$\int_{S}^{T} \phi_n \, dB_t = \sum_{\substack{S \leq t_j \leq T \\ S \leq t_j \leq U}} e_j(\omega) [B_{t_{j+1}} - B_{t_j}]$$
$$= \sum_{\substack{S \leq t_j \leq U \\ U \leq t_j \leq U}} e_j(\omega) [B_{t_{j+1}} - B_{t_j}] + \sum_{\substack{U \leq t_j \leq T \\ U \leq t_j \leq T}} e_j(\omega) [B_{t_{j+1}} - B_{t_j}]$$

(ii) clear because of the linearity of summation

(iv) e_j and $B_{t_{j+1}} - B_{t_j}$ are \mathcal{F}_{t_j} measurable

(iii)
$$E[\int_{S}^{T} \phi_n \, dB_t] = E[\sum_{S \le t_j \le T} e_j(\omega)(B_{t_{j+1}} - B_{t_j})]$$

$$= \sum_{S \leq t_j \leq T} E[e_j(\omega)(B_{t_{j+1}} - B_{t_j})]$$

$$= \sum_{S \leq t_j \leq T} E[e_j(\omega)] E[(B_{t_{j+1}} - B_{t_j})]$$

$$-B_{t_{j+1}} - B_{t_j} \sim N(0, t_{j+1} - t_j)$$

Definition: martingale

An n-dimensional stochastic process $\{M_t\}_{t\geq 0}$ on $(\Omega, \mathcal{F}, \mathsf{P})$ is called a martingale with respect to a filtration $\{\mathcal{M}_t\}_{t\geq 0}$ if

(i) M_t is \mathcal{M}_t -measurable for all t

(ii) $E[|M_t|] < \infty$ for all t

(iii) $E[M_s|\mathcal{M}_t] = M_t$ for all s $\geq t$

Brownian Motion - Martingale

(i)
$$B_t$$
 is \mathcal{F}_t -measurable for all t
(ii) $E[|B_t|]^2 < E[|B_t|^2] = t < \infty$ for all t
(iii) $E[B_s|\mathcal{F}_t] = E[B_s - B_t + B_t|\mathcal{F}_t]$
 $= E[B_s - B_t|\mathcal{F}_t] + E[B_t|\mathcal{F}_t] = 0 + B_t = B_t$ for all $s \ge t$

$$- E[aX + bY|\mathcal{H}] = aE[X|\mathcal{H}] + bE[Y|\mathcal{H}]$$

- $E[X|\mathcal{H}] = E[X]$ if X is independent of \mathcal{H}
- $E[X|\mathcal{H}] = X$ if X is \mathcal{H} -measurable

Doob's martingale inequality

If M_t is a martingale such that $t \to M_t(\omega)$ is continuous a.s.,then for all $p \ge 1, T \ge 0$ and all $\lambda > 0$

$$P(\sup_{0 \le t \le T} |M_t| \ge \lambda) \le \frac{1}{\lambda^{\rho}} \cdot E[|M_T|^{\rho}]$$
(1)

Itô integral - t continuous

Let
$$f \in \nu(0, T)$$
. Then there exists a t-continuous version
of $\int_{0}^{t} f(s, \omega) dB_{s}(\omega)$; $0 \le t \le T$, i.e. there exists a
t-continuous stochastic process J_{t} on (Ω, \mathcal{F}, P) such that

$$P(J_t = \int_0^t f \, dB) = 1 \quad \forall t, 0 \le t \le T.$$

Proof. Let
$$\phi_n$$
 be the elementary function such that
 $E[\int_0^T (f - \phi_n)^2 dt] \rightarrow 0$, when $n \rightarrow \infty$.
Put $I_n(t, \omega) = \int_0^t \phi_n(s, \omega) dB_s(\omega)$
 $I_t = I(t, \omega) = \int_0^t f(s, \omega) dB_s(\omega); 0 \le t \le T$.
Then $I_n(\cdot, \omega)$ is continuous for all n.

$$I_{n}(s,\omega) \text{ is a martingale with respect to } \mathcal{F}_{t} \text{ for all } n (s > t):$$

$$E[I_{n}(s,\omega)|\mathcal{F}_{t}] = E[(\int_{0}^{t} \phi_{n} dB + \int_{t}^{s} \phi_{n} dB)|\mathcal{F}_{t}]$$

$$= \int_{0}^{t} \phi_{n} dB + E[\sum_{t \le t_{j} \le s} e_{j}\Delta B_{j}|\mathcal{F}_{t}]$$

$$= \int_{0}^{t} \phi_{n} dB + \sum_{j} E[E[e_{j}\Delta B_{j}|\mathcal{F}_{t_{j}}]|\mathcal{F}_{t}]$$

$$= \int_{0}^{t} \phi_{n} dB + \sum_{j} E[e_{j}E[\Delta B_{j}|\mathcal{F}_{t_{j}}]|\mathcal{F}_{t}]$$

$$= \int_{0}^{t} \phi_{n} dB$$

$$= I_{n}(t,\omega)$$

Hence $I_n - I_m$ is also an \mathcal{F}_t martingale. So by Doob's martingale inequality we have

$$P(\sup_{0 \le t \le T} |I_n(t,\omega) - I_m(t,\omega)| \ge \epsilon)$$

$$\leq \frac{1}{\epsilon^2} \cdot E[|I_n(T,\omega) - I_m(T,\omega)|^2]$$

$$=rac{1}{\epsilon^2}\cdot E[\int\limits_0^T(\phi_n-\phi_m)^2\;ds]
ightarrow 0 ext{ as }m,n
ightarrow\infty$$

$$\Rightarrow \mathsf{P}(\sup_{0 \le t \le T} |I_{n_{k+1}}(t,\omega) - I_{n_k}(t,\omega)| > 2^{-k}) < 2^{-k}$$

for a subsequence $n_k \to \infty$.

By the Borel-Cantelli lemma $P(\sup_{0 \le t \le T} |I_{n_{k+1}} - I_{n_k}| > 2^{-k}$ for infinitely many k) = 0

So for almost all ω there exists $k_1(\omega)$ such that $\sup_{0 \le t \le T} |I_{n_{k+1}}(t,\omega) - I_{n_k}(t,\omega)| \le 2^{-k}, k \ge k_1(\omega)$

Therefore $I_{n_k}(t, \omega)$ is uniformly convergent for $t \in [0, T]$ for almost all ω and the limit is t-continuous for $t \in [0, T]$.

Corollary Let $f(t, \omega) \in \nu(0, T)$ for all T. Then

$$M_t(\omega) = \int\limits_0^t f(s,\omega) \ dB_s$$

is a martingale w.r.t. \mathcal{F}_t and for λ , T > 0

$$P(\sup_{0\leq t\leq T}|M_t|\geq \lambda)\leq \frac{1}{\lambda^2}\cdot E[\int_0^T f(s,\omega)^2 ds].$$

Literature

Øksendal, B.(2010) Stochastic Differential Equations: An Introduction with Applications. Springer