ulm university universität

Summer Term 2015

Dr. Tim Brereton Lisa Handl

Stochastic Simulation Problem Sheet 1

Deadline: April 23, 2015 at noon before the exercises

Please email your code to lisa.handl@uni-ulm.de AND hand in a printed copy of the code!

Exercise 1 (theory) (3+2+2+1 points)

An apartment has 5 rooms, A, B, C, D and E, which are connected as shown in the following plan (rooms are connected if there is a gap in the wall separating them).

A cat walks through these rooms at random, starting in room A. If the cat goes to another room, it uniformly selects one of the directly neighboring rooms. Let X_n be the room in which the cat is after switching rooms for the *n*-th time.

- a) Draw a graph representing the Markov chain $\{X_n\}_{n\in\mathbb{N}}$ and write out its transition matrix.
- b) Calculate the probability that the cat is in room C after switching twice, i.e., that $X_2 = C$.
- c) Calculate the probability that $X_6 = B$ given that $X_4 = B$.
- d) State if the Markov chain is irreducible and justify your answer.

Exercise 2 (theory) (3 points)

Let $\{X_n\}_{n\in\mathbb{N}}$ be a Markov chain with state space $E = \{1, 2, 3\}$ and transition matrix $P = (p_{i,j})$, where $p_{12} = p_{23} = p_{31} = 1$. The initial distribution is $\boldsymbol{\alpha} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$. Now define

$$Y_n = \begin{cases} 0, & \text{if } X_n = 1, \\ 1, & \text{otherwise.} \end{cases}$$

Show that the sequence $\{Y_n\}_{n\in\mathbb{N}}$ is not a Markov chain.

Exercise 3 (theory) (2 + 2 points)

Consider a Markov chain with state space $E = \{0, 1, 2\}$ and transition matrix

$$P = \begin{pmatrix} \frac{1}{8} & \frac{3}{8} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{8} & \frac{3}{8} \\ \frac{3}{8} & \frac{1}{2} & \frac{1}{8} \end{pmatrix}.$$

Find a random mapping representation of P using

- a) $Z \sim U(0, 1)$.
- b) $Z \sim Bin(3, \frac{1}{2})$, i.e., Z binomial with parameters n = 3 and $p = \frac{1}{2}$.

Exercise 4 (theory) (3 + 1 points)

Consider a Markov chain whose transition matrix, P, is defined by the following graph

- a) Find the communicating classes of P. Which of these classes are closed?
- b) State if the transition matrix is irreducible and justify your answer.

Exercise 5 (programming) (2 + 1 points)

Consider Example 2 from the lecture: A flea lives in a house with three dogs. Every day, it either stays where it is (with probability 0.5) or jumps (with probability 0.5) to one of the other dogs (selected uniformly).

a) Write a Matlab program to simulate this Markov chain using the initial distribution $\mu_0 = \delta_1$. Run your simulation for n = 365 days and plot a histogram of the visited states.

Hint: You can use the Matlab function hist(x,y) to draw a histogram of the entries in x, where y is a vector specifying the bin centers.

b) Calculate the distribution of the flea's position after 5, 10 and 365 days. Use the initial distribution from a).

Exercise 6 (programming) (3 points)

Consider a Markov chain with state space $E = \mathbb{N}$ and transition matrix $P = (p_{i,j})$, where

$$p_{i,j} = \begin{cases} \frac{i-1}{i}, & \text{if } j = i-1, \\ \frac{1}{i}, & \text{if } j = i+1, \\ 0, & \text{otherwise.} \end{cases}$$

Write a Matlab program to simulate this Markov chain using the initial distribution $\mu_0 = \delta_1$. Generate and plot a realization of it up to n = 30.