uulm

Dr. Tim Brereton
Summer Term 2015
Lisa Handl

Stochastic Simulation
 Problem Sheet 2

Deadline: April 30, 2015 at noon before the exercises
Please email your code to lisa.handl@uni-ulm.de AND hand in a printed copy of the code!

Exercise 1 (theory) (3+3 points)
a) Which of the following random variables are stopping times in general, i.e., for any Markov chain $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ with state space \mathbb{Z} ?
(i) $\tau_{1}=\inf \left\{n \geq 0: X_{n}+X_{0}=5\right\}$
(ii) $\tau_{2}=10$
(iii) $\tau_{3}=\sup \left\{n \geq 0: X_{n} \in\{1,2,3\}\right\}$

Justify your answer.
b) Consider the Markov chain $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ with initial distribution $\boldsymbol{\mu}_{\mathbf{0}}=\boldsymbol{\delta}_{\mathbf{1}}$ and the following transition graph.

Which of the following random variables are stopping times for $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$?
(i) $\tau_{4}=\inf \left\{n \geq 0: Y_{n}+Y_{n+1}=5\right\}$
(ii) $\tau_{5}=\inf \left\{n \geq 0: Y_{\lceil n / 2\rceil} \geq 4\right\}$
(iii) $\tau_{6}=\sup \left\{n \geq 0: Y_{n} \in\{1,2,3\}\right\}$

Justify your answer.

Exercise 2 (theory) (3 points)

Prove the following statement: If P is a stochastic matrix, then P^{k} is a stochastic matrix for every $k \in \mathbb{N}$.

Exercise 3 (theory) ($2+2$ points)

Sisyphus is trying to roll a big round rock up an infinitely high hill. In every step he gets one meter higher with probability $p \in(0,1)$ and he loses the rock (so that it rolls back to the bottom) with probability $1-p$. Of course, he starts at the bottom of the hill. Consider the Markov chain $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ which is given by the height of Sisyphus and his rock.
a) Show that $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is recurrent.
b) Show that $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is positive recurrent.

Exercise 4 (theory) (3 points)

Consider a Markov chain $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ with transition matrix

$$
P=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)
$$

Find the stationary distribution of $\left\{X_{n}\right\}_{n \in \mathbb{N}}$.

Exercise 5 (programming) (4 points)
Write a Matlab program to simulate $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ as defined in Exercise 1 b) and estimate the expectation of τ_{4}, τ_{5} and τ_{6} if they are stopping times of $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$. Use a sample size of at least $N=10^{3}$.

Exercise 6 (programming) (4 points)
Consider the Markov chain $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ with state space \mathbb{Z}, initial distribution $\boldsymbol{\mu}_{\mathbf{0}}=\boldsymbol{\delta}_{\mathbf{0}}$ and transition probabilities

$$
p_{i, j}= \begin{cases}\frac{1}{4}, & \text { if } j=i-1, \\ \frac{1}{2}, & \text { if } j=i, \\ \frac{1}{4}, & \text { if } j=i+1, \\ 0 & \text { otherwise. }\end{cases}
$$

Simulate $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ and estimate the probability that it hits 8 before it hits -1 . Use a sample size of at least $N=10^{5}$.

