Stochastic Simulation
 Problem Sheet 5

Deadline: May 28, 2015 at noon before the exercises
Please email your code to lisa.handl@uni-ulm.de AND hand in a printed copy of the code!

Exercise 1 (theory) (3 points)

Let X, Y and Z be three discrete random variables with values in E, F and G, respectively. Prove the following statement:

If there is a function $g: E \times F \rightarrow[0,1]$ such that $P(X=x \mid Y=y, Z=z)=g(x, y)$ for all $x \in E, y \in F, z \in G$, then $P(X=x \mid Y=y)=g(x, y)$ for all $x \in E, y \in F$, and X and Z are conditionally independent given Y.

Exercise 2 (theory) (3 points)

Consider a Markov random field \boldsymbol{X} on a finite set S with respect to the neighborhood system defined by the graph $G=(S, E)$. Let $G_{A}=\left(A, E_{A}\right)$ with $A \subset S$ and $E_{A}=\left\{\left(s_{1}, s_{2}\right) \in E\right.$: $\left.s_{1}, s_{2} \in A\right\}$ be a subgraph of G. Show that if E contains no edges between A and $S \backslash A$, then $\boldsymbol{X}_{A}=\left\{X_{s}, s \in A\right\}$ is a Markov random field on G_{A}.

Exercise 3 (theory) (3+2 points)
Consider a Markov random field \boldsymbol{X} on a finite set S with respect to the neighborhood system defined by the graph $G=(S, E)$. Let $M \subset S$ be the set of all vertices without neighbors. Show that
a) The set $\boldsymbol{X}_{M}=\left\{X_{s}, s \in M\right\}$ consists of independent random variables.
b) \boldsymbol{X}_{M} is independent of $\boldsymbol{X}_{S \backslash M}$.

Exercise 4 (theory) (3 points)
Consider a Markov random field \boldsymbol{X} on a finite set S with respect to the neighborhood system defined by the graph $G=(S, E)$. Let $\tilde{G}=(V, \tilde{E})$ be another graph with the same vertices as G but different edges. Is \boldsymbol{X} a Markov random field with respect to the neighborhood system defined by \tilde{G} ? Give a counter example or provide a proof of your answer.

Exercise 5 (programming) (3+2 points)

Consider the set A of all 5×5 matrices with values in $\{0,1\}$ and the subset $A \subset \Omega$ of all such matrices which have no 1 s directly next to each other in a row or column, like in Exercise 10 on the last problem sheet. This time, we do not want to draw uniformly from Ω but according to the distribution

$$
\boldsymbol{\pi}_{T}(\boldsymbol{x})=\frac{1}{Z_{T}} \mathrm{e}^{-\frac{1}{T} \mathcal{E}(\boldsymbol{x})} \quad \forall \boldsymbol{x} \in A
$$

with the energy function

$$
\mathcal{E}(\boldsymbol{x})= \begin{cases}-\sum_{s \in S} x_{s} \log (\lambda) & \text { if } \boldsymbol{x} \in \Omega \\ \infty & \text { otherwise }\end{cases}
$$

where $T=1$ and $\lambda \in(0, \infty)$. Here S denotes the set of all sites in the matrix \boldsymbol{x}.
a) Write a Matlab program to draw from $\boldsymbol{\pi}$ approximately, using the Metropolis algorithm.
b) Run your program from a) for $\lambda=0.5,1$ and 1.5 and at least $N=10^{5}$ steps and estimate the expected number of ones in the resulting random matrix.

Hint: You can do so by averaging over all matrices in the Markov chain you run.

Exercise 6 (programming) ($2+3+2$ points)
Consider two Markov chains $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ with the following transition graph.

a) Write out a random mapping representation of $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ using Bernoulli distributed random variables.
b) Write a Matlab program to simulate the random mapping coupling of $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ for $p=0.6, X_{0}=1$ and $Y_{0}=7$ using a) and plot a realization of it up to the coupling time $\tau_{\text {couple }}=\inf \left\{n \geq 0: X_{n}=Y_{n}\right\}$.
c) Run your program from b) at least $N=10^{4}$ times and estimate the expected coupling time, $\mathbb{E} \tau_{\text {couple }}$.

