Prof. Dr. Evgeny Spodarev Dipl.-Math. Stefan Roth SS 2015 15. Juli 2015

Stochastik I - Probeklausur

Besprechung: Donnerstag, 23. Juli, 10-12 Uhr in H20.

Aufgabe 1

Betrachte den R-Quelltext weiter unten. Du kannst davon ausgehen, dass die Vektoren x und y in Zeile 1 immer die gleiche Länge besitzen.

- (a) Was speichert die Funktion f() in der Variable a? Gib sowohl eine mathematische Formel als auch den Fachausdruck dafür an.
- (b) Gib die in Zeile 10 berechnete Formel als mathematischen Ausdruck an.
- (c) Wie nennt man den von f() berechneten Wert, und wie ist das Ergebnis in Zeile 13 zu interpretieren?

Quelltext zu Aufgabe 1:

```
1 > f<-function(x, y) {
2 + a <- numeric(0)
3 + for (i in 1:length(x))
4 + a[i] <- length(x[x <= x[i]])
5 +
6 + b <- numeric(0)
7 + for (i in 1:length(y))
8 + a[i] <- length(y[y <= y[i]])
9 +
10 + sum((a-mean(a)) * (b-mean(b))) / sqrt( sum((a-mean(a))^2) * sum((b-mean(b))^2))
11 + }
12 > f(daten$x, daten$y)
13 [1] -0.1537348
```

Aufgabe 2

Sei X_1, \ldots, X_n eine i.i.d. Zufallsstichprobe mit $X_i \sim F$. Es bezeichne \hat{F}_n die empirische Verteilungsfunktion der Stichprobe. Zeige, dass

$$Cov(\hat{F}_n(x), \hat{F}_n(y)) = \frac{F(\min\{x, y\}) - F(x)F(y)}{n},$$

für beliebige $x, y \in \mathbb{R}$ gilt.

Aufgabe 3

Es seien Y_1, \ldots, Y_n unabhängig und identisch $N(0, \sigma^2)$ -verteilt. Beobachtbar seien aber nur $X_i = Y_i^2$ für $i = 1, \ldots, n$.

(a) Zeige, dass $X_i \stackrel{d}{=} \sigma^2 Z_i$ für $Z_i \sim \chi_1^2$ gilt, und somit X_i für $x \geq 0$ die Dichte

$$f_{X_1}(x) = \frac{\exp(-x/2\sigma^2)}{\sigma\sqrt{2\pi x}}$$

hat.

- (b) Berechne einen M-Schätzer für σ^2 der nur von X_1, \ldots, X_n abhängt.
- (c) Berechne einen ML-Schätzer für σ und einen für σ^2 , die beide nur von X_1,\ldots,X_n abhängen.

Aufgabe 4

Seien X_1, \ldots, X_n unabhängige und identisch verteilte Zufallsvariablen mit $X_i \sim U(\theta_1, \theta_2), \ \theta_1 < \theta_2$ und $\theta_1, \theta_2 \in \mathbb{R}$.

- (a) Zeige, dass $T=(X_{(1)},X_{(n)})$ ein suffizienter Schätzer für (θ_1,θ_2) ist.
- (b) Es darf zusätzlich angenommen werden, dass T ein vollständiger Schätzer ist. Konstruiere ausgehend von T einen einen besten erwartungstreuen Schätzer für $(\theta_1 + \theta_2)/2$. Begründe deine Antwort.

Aufgabe 5

Die Abfüllmenge von Backpulver (in g) werde durch die Zufallsvariable $X \sim N(\mu, 50)$ beschrieben. Für 73 (zufällig und unabhängig) ausgewählte Backpulververpackungen ergab sich ein durchschnittliches Gewicht von $\bar{x}_{73} = 51g$.

(a) Teste die Hypothese

 H_0 : Das Durchschnittsgewicht des Backpulvers beträgt 53g

zum Niveau 0.05. Verwende hier folgendes Quantil der Standardnormalverteilung: $z_{1-\frac{\alpha}{2}}=z_{0.975}=1.96.$

- (b) Sei nun 51g der tatsächliche Wert von μ . Wie groß ist die Fehlerwahrscheinlichkeit 2. Art bei dem in (a) verwendeten Test? Die Werte der Standardnormalverteilung müssen nicht berechnet werden.
- (c) In welchem Intervall muss \bar{x}_{73} liegen, falls H_0 nicht verworfen wird?

Zusätzlich eine multiple choice Aufgabe!