Random Fields I SoSe 2016 April 11, 2016 Universität Ulm Dr. Patricia Alonso Ruiz Dr. Vitalii Makogin

Exercise sheet 1 (total -17 points)

till April 19, 2016

Exercise 1-1 (4 points)

Prove the existence of a random field $X = \{X(t), t \in T\}$ with the following finite dimensional distributions and specify the measurable spaces $(E_{t_1,\ldots,t_n}, \mathcal{E}_{t_1,\ldots,t_n})$.

- 1. (2 points) $X(t) \sim Poi(\lambda_t), \lambda_t > 0, t \in T$ and X(s), X(t) are independent for every $t, s \in T, s \neq t$.
- 2. (2 points) $X(t) = |Y(t)|^2$, where $Y(t) \sim N(0, I_n)$, I_n denotes the identity matrix and Y(s), Y(t) are independent for every $t, s \in T, s \neq t$. Find the distribution of X(t).

Hint: Sometimes it's easier to use Kolmogorov's existence theorem formulated in terms of characteristic functions. For example, one can use Proposition A. 1

Exercise 1-2 (2 points)

Give an example (not the one presented in the lecture) of a non-continuous random function which has a continuous modification.

Exercise 1-3 (4 points)

Let $Y \sim U[0,1]$ and Z be a d-dimensional random vector, where Z and Y are independent. Consider a random field $X = \{X(t), t \in \mathbb{R}^d\}$ defined by $X(t) = \sqrt{2}\cos(2\pi Y + \langle t, Z \rangle)$, where $\langle \cdot, \cdot \rangle$ denotes the scalar product. Each realization of X is a cosine wave function.

- 1. (2 points) Compute the expectation of X(t) for $t \in \mathbb{R}^d$.
- 2. (2 points) Determine the covariance function of X.

Exercise 1-4 (2 points)

Let Φ be a homogeneous Poisson point process in \mathbb{R}^d with intensity $\lambda > 0$.

- 1. (1 point) Write down the finite dimensional distributions of Φ for disjoint bounded Borel sets B_1, \ldots, B_n .
- 2. (1 point) Compute the expectation $\mathbf{E}\Phi(B)$ and the variance $\mathbf{Var}\Phi(B)$ for bounded Borel sets B.

¹**Proposition A.** The family of measures $\mathbf{P}_{t_1,\ldots,t_d}$ on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d)), (t_1,\ldots,t_d) \in T^d, d \geq 1$, satisfies the conditions of symmetry and consistency iff for all $d \geq 2, (s_1,\ldots,s_d) \in \mathbb{R}^d$ and $(t_1,\ldots,t_d) \in T^d$ it holds

$$\varphi_{\mathbf{P}_{t_1,\ldots,t_d}}((s_1,\ldots,s_d)) = \varphi_{\mathbf{P}_{t_{i_1},\ldots,t_{i_d}}}((s_{i_1},\ldots,s_{i_d}))$$

for any permutation $(1, \ldots, d) \rightarrow (i_1, \ldots, i_d)$,

$$\varphi_{\mathbf{P}_{t_1,\ldots,t_{d-1}}}((s_1,\ldots,s_{d-1})) = \varphi_{\mathbf{P}_{t_1,\ldots,t_d}}((s_1,\ldots,s_{d-1},0)).$$

Exercise 1-5 (5 points)

Let Φ be a homogeneous Poisson point process in \mathbb{R}^d with intensity $\lambda > 0$. Consider the Shot-Noise-Field $\{X(t), t \in \mathbb{R}^d\}$ defined by

$$X(t) = \sum_{x \in \Phi} g(t - x),$$

where $g: \mathbb{R}^d \to \mathbb{R}$ is a deterministic function with $\int_{\mathbb{R}^d} |g(z)| dz < \infty$ and $\int_{\mathbb{R}^d} g^2(z) dz < \infty$.

- 1. (2 points) Prove that $\mathbf{E}X(t) = \lambda \int_{\mathbb{R}^d} g(z) dz, \forall t \in \mathbb{R}^d$.
- 2. (3 points) Prove that $\mathbf{Cov}[X(s)X(t)] = \lambda \int_{\mathbb{R}^d} g(t-s-z)g(-z)dz, \forall s, t \in \mathbb{R}^d$.

Hint: Firstly, prove the statements for a simple function g.