Random Fields I SoSe 2016 April 22, 2016 Universität Ulm Dr. Patricia Alonso Ruiz Dr. Vitalii Makogin

Exercise sheet 2 (total - 20 points)

till May 3, 2016

(revised)

Exercise 2-1 (4 points)

Prove that the following functions are positive definite

- 1. (2 points) Laplacian kernel: $C_1(x, y) = \exp\left(-\frac{1}{2}\sum_{i=1}^d |x_i y_i|\right), x, y \in \mathbb{R}^d$. Hint: You may use Polya's theorem to prove that $e^{-|t|}$ is a positive definite function.
- 2. (2 points) Squared exponential c.f. $C_2(x, y) = \exp\left(-\frac{1}{2}||x y||^2\right), x, y \in \mathbb{R}^d$. Hint: Use the Taylor's expansion of e^t and then prove that $e^{-\langle x, y \rangle}$ is a positive definite function.

Exercise 2-2 (4 points)

1. (2 points) A real-valued random field $\{X(t), t \in \mathbb{R}^d_+\}$ is called *H*-self-similar (H > 0) if for any a > 0

$$\{X(at), t \in \mathbb{R}^d_+\} \stackrel{a}{=} \{a^H X(t), t \in \mathbb{R}^d_+\},\$$

where $\stackrel{d}{=}$ denotes equality of finite-dimensional distributions.

Prove that Lamperty transform of H - ss random field X given by

$$Y(t) = e^{-H < t, a >} X(e^{< t, a >} b), t \in \mathbb{R}^d, \text{ for } a, b \in \mathbb{R}^d_+ \setminus \{0\}$$

is a strictly stationary random field.

2. (2 points) Consider a random field

$$X(t) = Z_1 \cos(2\pi Y_1 + \langle t, Y_2 \rangle) + Z_2 \sin(2\pi Y_1 + \langle t, Y_2 \rangle), t \in \mathbb{R}^d,$$

where Z_1, Z_2 are centered, uncorrelated, identically distributed random variables and Y_1, Y_2 are independent of Z_1, Z_2 . Prove that X is a wide-stationary random field.

Exercise 2-3 (4 points)

Let $H \in (0,1)$ and $\{B^H(t), t \in \mathbb{R}^d_+\}$ be a real valued Gaussian *H*-self-similar random field with stationary increments.¹

- 1. (2 points) Determine the distribution of $B^{H}(t)$.
- 2. (2 points) Compute the covariance function of B^H .

¹**Def.** A random field X has stationary increments if for any $t, r \in \mathbb{R}^d_+ X(t+r) - X(t) \stackrel{d}{=} X(r)$.

Exercise 2-4 (3 points)

Recall that $f(x,y) = \frac{1}{2} (x^{2H} + y^{2H} - |x - y|^{2H}), x, y \in \mathbb{R}_+$ is the covariance function of a fractional Brownian motion $\{B^H(t), t \in \mathbb{R}_+\}$ with Hurst index $H \in (0,1)$. Prove that the following functions are positive definite

- 1. (1 point) $C_3(x,y) = \frac{1}{2} \left(\|x\|^{2H} + \|y\|^{2H} \|x-y\|^{2H} \right), x, y \in \mathbb{R}^d_+.$
- 2. (2 points) For every $\mathbf{H} = (H_1, \dots, H_d) \in (0, 1)^d$

$$C_{\mathbf{H}}(t,s) = 2^{-d} \prod_{i=1}^{d} \left(t_i^{2H_i} + s_i^{2H_i} - |t_i - s_i|^{2H_i} \right), t = (t_1, \dots, t_d) \in \mathbb{R}^d_+, s = (s_1, \dots, s_d) \in \mathbb{R}^d_+.$$

Write down $C_{\mathbf{H}}(t, s)$ for $\mathbf{H} = (0.5, ..., 0.5)$.

Exercise 2-5 (5 points)

For a given vector $H = (H_1, \ldots, H_d) \in (0, 1)^d$ a fractional Brownian sheet $\{B_H(t), t \in \mathbb{R}^d_+\}$ with Hurst index H is a real-valued, centered Gaussian random field with covariance function given by

$$\mathbf{E}B_{H}(t)B_{H}(s) = 2^{-d} \prod_{i=1}^{d} \left(t_{i}^{2H_{i}} + s_{i}^{2H_{i}} - |t_{i} - s_{i}|^{2H_{i}} \right), t = (t_{1}, \dots, t_{d}) \in \mathbb{R}^{d}_{+}, s = (s_{1}, \dots, s_{d}) \in \mathbb{R}^{d}_{+}.$$

- 1. (1 point) Why does the fractional Brownian sheet exist?
- 2. (1 point) For every $t \in \mathbb{R}^d_+$ determine the distribution of $B_H(t)$.
- 3. (1 point) In the case d = 2 determine the distribution of the increment $B_H(t) B_H(s)$.
- 4. (2 points) In the case d = 2 determine the distribution of a rectangular increment $\Delta_s B_H(t)$ given by

$$\Delta_s B_H(t) = (B_H(t_1, t_2) - B_H(s_1, t_2)) - (B_H(t_1, s_2) - B_H(s_1, s_2)).$$