Random Fields I SoSe 2016 June 6, 2016 Universität Ulm Dr. Patricia Alonso Ruiz Dr. Vitalii Makogin

Exercise sheet 5 (total -15 points)

till June 14, 2016

Exercise 5-1 (3 points)

Let B^H be a fractional Brownian sheet with index (H_1, \ldots, H_d) . Show that the following random field is a fractional Brownian sheet as well

$$B_2^H(t) = c_1^{H_1} \cdots c_d^{H_d} B^H\left(\frac{t_1}{c_1}, \dots, \frac{t_d}{c_d}\right), (c_1, \dots, c_d) \in (0, +\infty)^d.$$

Exercise 5-2 (3 points)

A random field $\{B_H(t), t \in \mathbb{R}^d_+\}$ is called a Lévy fractional Brownian field with Hurst index $H \in (0,1)$ if B_H is a centered Gaussian random field with covariance function

$$\mathbf{E}B_H(t)B_H(s) = \frac{1}{2}(\|t\|^{2H} + \|s\|^{2H} - \|t - s\|^{2H}).$$

Prove that $Y(t) = B_H(t + 1) - B_H(t), t \in \mathbb{R}^d_+$, is a stationary random field. Find its mean and covariance function.

Exercise 5-3 (3 points)

Let $\{B_H(t), t \in \mathbb{R}_+\}$ be a fractional Brownian motion with Hurst index $H \in (0, 1)$. Let C(k) be the covariance function of the process $Y(k) = B_H(k+1) - B_H(k), k \in \mathbb{N}$. Prove that

$$\sum_{k=1}^{\infty} |C(k)| \begin{cases} < \infty, & \text{if } H < 1/2 \\ = 0, & \text{if } H = 1/2 \\ = \infty & \text{if } H > 1/2. \end{cases}$$

Exercise 5-4 (3 points)

Show the existence of a stochastically continuous random field $X = \{X(t), t \in T\}$ which fulfils simultaneously the following conditions:

- The second moment does not exist,
- The variogram $\gamma(s, t)$ is finite for all $s, t \in T$.

Exercise 5-5 (3 points)

Let $X = \{X(t), t \in \mathbb{R}_+\}$ be a Lévy process (with stationary and independent increments). For some T > 0 take K([0,T]) to be the smallest ring that contains all finite unions of disjoint intervals in [0,T]. For $A = (s_1, t_1) \cup \ldots \cup (s_n, t_n)$, (s_i, t_i) pairwise disjoint, define

$$W(A) := \sum_{j=1}^{n} X(t_j) - X(s_j), \quad W(\{t\}) = 0 \quad \forall t \in [0, T].$$

Prove that W is an orthogonally scattered random measure on ([0, T], K([0, T])).