Random Fields I
SoSe 2016
June 17, 2016

Universität Ulm
Dr. Patricia Alonso Ruiz
Dr. Vitalii Makogin

Exercise sheet 6 (total - 18 points)

Exercise 6-1 (3 points)

Let $X=\{X(t), t \in \mathbb{R}\}$ be a complex-valued process that is mean-square continuous and has independent increments, i.e., $\mathbf{E}(X(u)-X(s)) \overline{(X(t)-X(u))}=0$ for any $s<u<t$.

We introduce the family of random variables $W((a, b]):=X(b)-X(a)$ on the semiring $\mathcal{K}=\{(a, b],-\infty<a<b<\infty\}$. Show that W is an orthogonally scattered random measure on \mathcal{K}.

Exercise 6-2 (3 points)

Let \mathbf{W} be a Gaussian white noise based on the Lebesgue measure and define a random field on \mathbb{R}_{+}^{d} by setting $B(t)=\mathbf{W}([0, t])$, where $[0, t]$ is the rectangle $\prod_{i=1}^{d}\left[0, t_{i}\right]$.

1. Show that B is a centered Gaussian field on \mathbb{R}_{+}^{d} with covariance

$$
\mathbf{E}[B(s) B(t)]=\min \left(s_{1}, t_{1}\right) \cdots \min \left(s_{d}, t_{d}\right)
$$

2. Suppose that $d>1$ and fix $(d-k)$ of the index variables t_{i}. Show that B is a scaled k-parameter Brownian sheet in the remaining variables.

Exercise 6-3 (3 points)

Let $\left\{B(t), t \in \mathbb{R}_{+}^{2}\right\}$ be a Brownian sheet on the plane and denote by $[a, b]$ the rectangle $\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$. We introduce the family of random variables $W((a, b]):=B\left(b_{1}, b_{2}\right)-B\left(b_{1}, a_{2}\right)-$ $B\left(a_{1}, b_{2}\right)+B\left(a_{1}, a_{2}\right)$ on the semiring $\mathcal{K}=\left\{(a, b],-\infty<a_{i}<b_{i}<\infty\right\}$. Show that W is an orthogonally scattered random measure on \mathcal{K}.

Exercise 6-4 (5 points)

Let $\left\{B(t), t \in \mathbb{R}_{+}\right\}$be a Brownian motion. Define the family of random variables $W((a, b]):=$ $B(b)-B(a)$ on the semiring $\mathcal{K}=\{(a, b],-\infty<a<b<\infty\}$.

1. (1 point) Show that W is an orthogonally scattered random measure on \mathcal{K}.
2. (2 points) Let $I(f)$ be the stochastic integral of $f \in L^{2}(\mathbb{R})$ with respect to W. Show that $I(f)$ is a Gaussian random variable. Find $\mathbf{E} I(f)$ and $\mathbf{E}\left[I(f)^{2}\right]$.
3. (2 points) Prove that $I(f)$ is a Gaussian random variable for any orthogonally scattered Gaussian random measure W.

Exercise 6-5 (4 points)

Let (E, Σ, ν) be a measurable space, and let ν be a σ-finite measure given on a semiring \mathcal{K} of subsets of E. Show that simple function of the form

$$
f: E \rightarrow \mathbb{C}, f=\sum_{i=1}^{m} c_{i} \mathbf{1}_{B_{i}}
$$

where $c_{i} \in \mathbb{C}, B_{i} \in \mathcal{K}(E), i=1 \ldots m, \cup_{i=1}^{m} B_{i}=E, B_{i} \cap B_{j}=\emptyset$ for $i \neq j$, are dense in $L^{2}(E, \nu)$.

