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Definitions

1. (Ω,Σ,P) denotes a probability space and (H, || · ||) a separable Hilbert
space

2. X denotes an isonormal process, that is X : H → L2(Ω) is centered,
Gaussian and unitary

3. D : D(D)→ L2(Ω; H) and DF :=
m∑

i=1

∂f
∂xi

(X (h1), ...,X (hm))hi for all

F = f (X (h1), ...,X (hm)). D denotes the closure of D.

4. ∆ : D(∆)→ L2(Ω) and ∆F := −
∞∑

n=1
nPnF , where Pn is the orthogonal

projection on the n-th Wiener Chaos.

5. ∆−1 : L2(Ω)→ D(∆), such that ∆∆−1F = F − EF .

6. Div : D(Div)→ L2(Ω), where Div(F ) is the uniquely determined element
fulfilling 〈F ,Div(u)〉L2(Ω) = 〈DF , u〉L2(Ω;H) for all F ∈ D(D)
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Lemma

1. Let F ∈ L2(Ω) then we have F ∈ D(∆) if and only if F ∈ D(D) and
DF ∈ D(Div). And in this case Div(DF ) = −∆F .

2. Let F := (F1, ...,Fm) ∈ D(D)m and ϕ : Rm → R be continuously
differentiable with bounded first derivate. Then we have ϕ ◦ F ∈ D(D)

and Dϕ ◦ F =
m∑

i=1

∂ϕ
∂xi

(F )DFi
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Lemma
Let F ,G ∈ D(D).
Let ϕ : R→ R be C1 with bounded first derivatives.
Then we have

E(Fϕ ◦G) = EFEϕ ◦G + Eϕ′ ◦G〈DG,−D∆−1F 〉H .

Proof.

E ((F − E(F ))(ϕ ◦G)) = E
(

(∆∆−1F )(ϕ ◦G)
)

= E
(

(−DivD∆−1F )(ϕ ◦G)
)

= E
(
〈−D∆−1F ,Dϕ ◦G〉H

)
= E

(
ϕ′ ◦G〈−D∆−1F ,DG〉H

)
= E

(
ϕ′ ◦G〈DG,−D∆−1F 〉H

)
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Corollary
Let F ∈ D(D) be centered. Then we have

Var(F ) = E〈DF ,−D∆−1F 〉H .

Proof. Let ϕ(x) := x . Then we have

Var(F ) = E(Fϕ ◦ F ) = EFEϕ ◦ F + Eϕ′ ◦ F 〈DF ,−D∆−1F 〉H = E〈DF ,−D∆−1F 〉H
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Proposition
Let F ∈ D(D) be centered and assume that EF 2 = 1.
Let ϕ : R→ R be C1 and assume that |ϕ′| ≤ K for a K ∈ [0,∞).
Then we have

|Eϕ′ ◦ F − E(F · ϕ ◦ F )| ≤ KE|1− 〈DF ,−D∆−1F 〉H |.

Proof.

|Eϕ′ ◦ F − E(F · ϕ ◦ F )| = |Eϕ′ ◦ F − EFEϕ ◦ F − Eϕ′ ◦ F 〈DF ,−D∆−1F 〉H |
= |Eϕ′ ◦ F − Eϕ′ ◦ F 〈DF ,−D∆−1F 〉H |
= |E(ϕ′ ◦ F · (1− 〈DF ,−D∆−1F 〉H))|
≤ K · E|1− 〈DF ,−D∆−1F 〉H |.

Remark
The assertions remains true if ϕ ∈ Lip(K ) and if one assumes in addition that
F has a density, w.r.t. the one dimensional Lebesgue measure.
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Definition
The total variation distance dTV is defined by

dTV(X ; Y ) := sup
B∈B(R)

|P(X ∈ B)− P(Y ∈ B)|,

for all random variables X ,Y : Ω→ R.

Definition
Moreover, the Wasserstein distance dW is defined by

dW(X ; Y ) := sup
ϕ∈Lip(1)

|Eϕ(X )− Eϕ(Y )|,

for all random variables X ,Y , such that ϕ(X ), ϕ(Y ) ∈ L1(Ω) for all ϕ ∈ Lip(1).
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Theorem
Let F ∈ D(D) be centered, introduce σ2 := Var(F ) 6= 0 and N ∼ N(0, σ2).
Then we have

dW(F ; N) ≤
√

2
σ
√
π
E|σ2 − 〈DF ,−D∆−1F 〉H |.

Remark
We have σ2 = E〈DF ,−D∆−1F 〉H .
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Proof
Let M ∼ N(0, 1) then it has already been proven that

dW(F ; M) ≤ sup

(
|Eϕ′(F )− EFϕ(F )| : ϕ ∈ C1(R), |ϕ′| ≤

√
2
π

)
.

(The latter is true for any square integrable F , not just for our particular one.)

dW(F ; N) = σ sup
ϕ∈Lip(1)

∣∣∣∣Eϕ(F
σ

)
− Eϕ

(
N
σ

)∣∣∣∣
= σdW

(
F
σ

;
N
σ

)
≤ σ sup

(∣∣∣∣Eϕ′(F
σ

)
− EF

σ
ϕ

(
F
σ

)∣∣∣∣ : ϕ ∈ C1(R), |ϕ′| ≤
√

2
π

)

≤ σ

√
2
π
E|1− 〈D

(
F
σ

)
,−D∆−1

(
F
σ

)
〉H |

=

√
2

σ
√
π
E|σ2 − 〈DF ,−D∆−1F 〉H |
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Remark
Let F ∈ D(D) be centered, introduce σ2 := Var(F ) 6= 0 and N ∼ N(0, σ2).
Moreover, assume that F has a density.
Then we have

dTV(F ; N) ≤ 2
σ2 E|σ

2 − 〈DF ,−D∆−1F 〉H |.

This is proven absolutely analogously to the previous theorem.
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Central Limit Theorem
Let (Fm)m∈N ⊆ D(D) be a sequence of centered, non constant random
variables, introduce σ2

m := Var(Fm) and let σ2 ∈ (0,∞).
Moreover, assume that

lim
m→∞

〈DFm,−D∆−1Fm〉H = σ2

in L1(Ω).
Then we have

lim
m→∞

Fm

σm
= N(0, 1)

in law.



Page 42 Malliavin meets CLT | | July 2016

Proof
Firstly, we have

lim
m→∞

σ2
m = lim

m→∞
Var(Fm) = lim

m→∞
E〈DFm,−D∆−1Fm〉H = σ2.

Now let N be standard Gaussian. Then we have

lim
m→∞

dW(
Fm

σm
; N) ≤ lim

m→∞

√
2√
π
E|1− 1

σ2
m
〈DFm,−D∆−1Fm〉H |

= lim
m→∞

1
σ2

m

√
2√
π
E|σ2

m − σ2 + σ2 − 〈DFm,−D∆−1Fm〉H |

≤ lim
m→∞

1
σ2

m

√
2√
π
|σ2

m − σ2|+ 1
σ2

m

√
2√
π
E|σ2 − 〈DFm,−D∆−1Fm〉H |

= 0.
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Remark

1. We just proved a CLT without directly stating any independence
assumptions.

2. How does one verify that lim
m→∞

〈DFm,−D∆−1Fm〉H = σ2? How does one

even choose the Hilbert space?
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Content

1. Basic Definitions

2. A general CLT

3. CLT for stationary Gaussian sequences
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Definitions

1. γ denotes the standard Gaussian measure and Wn the hermite
polynomials.

2. f ∈ L2(R,B(R), γ) is a fixed non-constant function such that
∫
R

fdγ = 0.

3. (an)n∈N is such that f =
∞∑

n=1
anWn, where the latter convergence is

understood in L2(R,B(R), γ).

4. The Hermite rank of f is defined by
df := inf{n ∈ N| a1 = ... = an−1 = 0, an 6= 0} <∞

5. (Xk )k∈Z denote a centered, stationary, Gaussian sequence, such that
Var(Xk ) = 1 for one (and therefore every) k ∈ N

6. C(k) := EXk X0

7. Vm := 1√
m

m∑
k=1

f (Xk )
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Remark

1. (f (Xk ))k∈Z is also a stationary sequence. Particularly, it consists of
identically random variables.

2. Ef (Xk ) =
∫
R

fdγ = 0.

Remark
One can show that there is a separable Hilbert space H, an isonormal
Gaussian process X and a sequence (ek )k∈Z such that

1. The closure of the linear span of (ek )k∈Z is H.

2. 〈ek , ej〉H = C(k − j) for all k , j ∈ Z.

3. Xk = X (ek ) for all k ∈ Z.

Then one proves, using Malliavin Calculus, the following CLT:
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CLT for Functionals of stationary Gaussian Sequences
Assume that

∑
k∈Z
|C(k)|df <∞. Then we have

lim
m→∞

Vm = N,

in law, where N is a centered Gaussian random variable, with

Var(N) =
∞∑

j=df

j!a2
j

∑
k∈Z

C(k)j ∈ (0,∞)
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CLT for the Increments of Fractional Brownian Motion
Let (Bt )t∈R be a fractional Brownian motion with Hurst index H ∈ (0, 1− 1

2q ),
where q ∈ N, with q 6= 1. Moreover, introduce

Xk := Bk − Bk−1, k ∈ Z.

and

Vm :=
1√
m

m∑
k=1

Wq(Xk ).

Then we have

lim
m→∞

Vm = N,

in law, where N is a centered Gaussian random variable, with

Var(N) =
q!

2q

∑
k∈Z

(|k + 1|2H + |k − 1|2H − 2|k |2H)q .
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Proof
1. By definition we have EBt = 0 and E(BtBs) = 1

2 (|t |2H + |s|2H − |t − s|2H).
2. Introduce C(ν) := E(Xk Xk+ν) for all ν ∈ Z and an arbitrary k ∈ Z.
3. A trivial calculation yields

C(ν) =
1
2

(|ν − 1|2H + |ν + 1|2H − 2|ν|2H)

Consequently, (Xk )k∈Z is a centered, stationary and has unit variance.
4. We already know that

∫
R

Wqdγ = 0.

5. Trivially an = 0 if n 6= q and an = 1 if n = q.
6. Moreover, one verifies

C(ν) = H(2H − 1)|ν|2H−2 + o(|ν|2H−2), as ν →∞

Finally, the latter implies that
∑
ν∈Z
|C(ν)|q <∞ which yields the claimed

convergence result.
7. The expression for the variance is trivial as an = 0 if n 6= q and an = 1 if
n = q.
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