Content

1. Basic definitions
2. A general CLT
3. CLT for stationary Gaussian sequences

Definitions

1. $(\Omega, \Sigma, \mathbb{P})$ denotes a probability space and $(H,\|\cdot\|)$ a separable Hilbert space
X denotes an isonormal process, that is $X: H \rightarrow L^{2}(\Omega)$ is centered, Gaussian and unitary
$D: \Omega(D) \rightarrow I^{2}(\Omega: H)$ and $D F:=\sum_{i=1}^{m} \frac{\partial f}{\partial x_{i}}\left(X\left(h_{1}\right), \ldots, X\left(h_{m}\right)\right) h_{i}$ for all $F=f\left(X\left(h_{1}\right), \ldots, X\left(h_{m}\right)\right) . \bar{D}$ denotes the closure of D.
2. $\Delta: \mathfrak{D}(\Delta) \rightarrow L^{2}(\Omega)$ and $\Delta F:=-\sum_{n=1}^{\infty} n P_{n} F$, where P_{n} is the orthogonal projection on the n-th Wiener Chaos.
3. $\Delta^{-1}: L^{2}(\Omega) \rightarrow \mathscr{D}(\Delta)$, such that $\Delta \Delta^{-1} F=F-\mathbb{E} F$.
4. Div : $\mathfrak{D}(\operatorname{Div}) \rightarrow L^{2}(\Omega)$, where $\operatorname{Div}(F)$ is the uniquely determined element fulfilling $\langle F, \operatorname{Div}(u)\rangle_{L^{2}(\Omega)}=\langle D F, u\rangle_{L^{2}(\Omega ; H)}$ for all $F \in \mathfrak{D}(D)$

Definitions

1. $(\Omega, \Sigma, \mathbb{P})$ denotes a probability space and $(H,\|\cdot\|)$ a separable Hilbert space
2. X denotes an isonormal process, that is $X: H \rightarrow L^{2}(\Omega)$ is centered, Gaussian and unitary

Definitions

1. $(\Omega, \Sigma, \mathbb{P})$ denotes a probability space and $(H,\|\cdot\|)$ a separable Hilbert space
2. X denotes an isonormal process, that is $X: H \rightarrow L^{2}(\Omega)$ is centered, Gaussian and unitary
3. $D: \mathfrak{D}(D) \rightarrow L^{2}(\Omega ; H)$ and $D F:=\sum_{i=1}^{m} \frac{\partial f}{\partial x_{i}}\left(X\left(h_{1}\right), \ldots, X\left(h_{m}\right)\right) h_{i}$ for all $F=f\left(X\left(h_{1}\right), \ldots, X\left(h_{m}\right)\right)$. \bar{D} denotes the closure of D.
$\Delta: \mathscr{D}(\Delta) \rightarrow L^{2}(\Omega)$ and $\Delta F:=-\sum_{n=1}^{\infty} n P_{n} F$, where P_{n} is the orthogonal projection on the n-th Wiener Chaos.
4. $\Delta^{-1}: L^{2}(\Omega) \rightarrow \mathscr{D}(\Delta)$, such that $\Delta \Delta^{-1} F=F-\mathbb{E} F$.
5. Div: $\mathscr{D}(\operatorname{Div}) \rightarrow L^{2}(\Omega)$, where $\operatorname{Div}(F)$ is the uniquely determined element fulfiling $\langle F, \operatorname{Div}(u)\rangle_{L^{2}(\Omega)}=\langle D F, u\rangle_{L^{2}(\Omega ; H)}$ for all $F \in \mathscr{D}(D)$

Definitions

1. $(\Omega, \Sigma, \mathbb{P})$ denotes a probability space and $(H,\|\cdot\|)$ a separable Hilbert space
2. X denotes an isonormal process, that is $X: H \rightarrow L^{2}(\Omega)$ is centered, Gaussian and unitary
3. $D: \mathfrak{D}(D) \rightarrow L^{2}(\Omega ; H)$ and $D F:=\sum_{i=1}^{m} \frac{\partial f}{\partial x_{i}}\left(X\left(h_{1}\right), \ldots, X\left(h_{m}\right)\right) h_{i}$ for all $F=f\left(X\left(h_{1}\right), \ldots, X\left(h_{m}\right)\right) . \bar{D}$ denotes the closure of D.
$\Delta: D(\Delta) \rightarrow L^{2}(\Omega)$ and $\Delta F:=-\sum_{n=1} n P_{n} F$, where P_{n} is the orthogonal projection on the n-th Wiener Chaos.
$\Delta^{-1}: L^{2}(\Omega) \rightarrow \mathfrak{D}(\Delta)$, such that $\Delta \Delta^{-1} F=F-\mathbb{E} F$. Div: $\mathscr{D}(\operatorname{Div}) \rightarrow L^{2}(\Omega)$, where $\operatorname{Div}(F)$ is the uniquely determined element fulfiling $\langle F, \operatorname{Div}(u)\rangle_{L^{2}(\Omega)}=\langle D F, u\rangle_{L^{2}(\Omega ; H)}$ for all $F \in \mathscr{D}(D)$

Definitions

1. $(\Omega, \Sigma, \mathbb{P})$ denotes a probability space and $(H,\|\cdot\|)$ a separable Hilbert space
2. X denotes an isonormal process, that is $X: H \rightarrow L^{2}(\Omega)$ is centered, Gaussian and unitary
3. $D: \mathfrak{D}(D) \rightarrow L^{2}(\Omega ; H)$ and $D F:=\sum_{i=1}^{m} \frac{\partial f}{\partial x_{i}}\left(X\left(h_{1}\right), \ldots, X\left(h_{m}\right)\right) h_{i}$ for all $F=f\left(X\left(h_{1}\right), \ldots, X\left(h_{m}\right)\right) . \bar{D}$ denotes the closure of D.
4. $\Delta: \mathfrak{D}(\Delta) \rightarrow L^{2}(\Omega)$ and $\Delta F:=-\sum_{n=1}^{\infty} n P_{n} F$, where P_{n} is the orthogonal projection on the n-th Wiener Chaos.
5. $\Delta^{-1}: L^{2}(\Omega) \rightarrow \mathfrak{D}(\Delta)$, such that $\Delta \Delta^{-1} F=F-\mathbb{E} F$.

Definitions

1. $(\Omega, \Sigma, \mathbb{P})$ denotes a probability space and $(H,\|\cdot\|)$ a separable Hilbert space
2. X denotes an isonormal process, that is $X: H \rightarrow L^{2}(\Omega)$ is centered, Gaussian and unitary
3. $D: \mathfrak{D}(D) \rightarrow L^{2}(\Omega ; H)$ and $D F:=\sum_{i=1}^{m} \frac{\partial f}{\partial x_{i}}\left(X\left(h_{1}\right), \ldots, X\left(h_{m}\right)\right) h_{i}$ for all $F=f\left(X\left(h_{1}\right), \ldots, X\left(h_{m}\right)\right) . \bar{D}$ denotes the closure of D.
4. $\Delta: \mathfrak{D}(\Delta) \rightarrow L^{2}(\Omega)$ and $\Delta F:=-\sum_{n=1}^{\infty} n P_{n} F$, where P_{n} is the orthogonal projection on the n-th Wiener Chaos.
5. $\Delta^{-1}: L^{2}(\Omega) \rightarrow \mathfrak{D}(\Delta)$, such that $\Delta \Delta^{-1} F=F-\mathbb{E} F$.
6. Div: $\mathfrak{D}(\operatorname{Div}) \rightarrow L^{2}(\Omega)$, where $\operatorname{Div}(F)$ is the uniquely determined element fulfilling $\langle F, \operatorname{Div}(u)\rangle_{L^{2}(\Omega)}=\langle D F, u\rangle_{L^{2}(\Omega ; H)}$ for all $F \in \mathfrak{D}(D)$

Lemma

1. Let $F \in L^{2}(\Omega)$ then we have $F \in \mathfrak{D}(\Delta)$ if and only if $F \in \mathfrak{D}(\bar{D})$ and $D F \in \mathfrak{D}($ Div $)$. And in this case $\operatorname{Div}(D F)=-\Delta F$.
Let $F:=\left(F_{1}, \ldots, F_{m}\right) \in \mathscr{D}(\bar{D})^{m}$ and $\varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be continuously differentiable with bounded first derivate. Then we have $\varphi \circ F \in \mathfrak{D}(\bar{D})$ and $\bar{D} \varphi \circ F=\sum_{i=1}^{m} \frac{\partial \varphi}{\partial}(F) \bar{D} F_{F}$

Lemma

1. Let $F \in L^{2}(\Omega)$ then we have $F \in \mathfrak{D}(\Delta)$ if and only if $F \in \mathfrak{D}(\bar{D})$ and $D F \in \mathfrak{D}$ (Div). And in this case $\operatorname{Div}(D F)=-\Delta F$.
2. Let $F:=\left(F_{1}, \ldots, F_{m}\right) \in \mathfrak{D}(\bar{D})^{m}$ and $\varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be continuously differentiable with bounded first derivate. Then we have $\varphi \circ F \in \mathfrak{D}(\bar{D})$ and $\bar{D} \varphi \circ F=\sum_{i=1}^{m} \frac{\partial \varphi}{\partial x_{i}}(F) \bar{D} F_{i}$

Content

1. Basic Definitions
2. A general CLT
3. CLT for stationary Gaussian sequences

Lemma

Let $F, G \in \mathfrak{D}(\bar{D})$.
Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} with bounded first derivatives.
Then we have

$$
\mathbb{E}(F \varphi \circ G)=\mathbb{E} F \mathbb{E} \varphi \circ G+\mathbb{E} \varphi^{\prime} \circ G\left(\bar{D} G,-\bar{D} \Delta^{-1} F\right\rangle_{H} .
$$

Proof.

Lemma

Let $F, G \in \mathfrak{D}(\bar{D})$.
Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} with bounded first derivatives.
Then we have

$$
\mathbb{E}(F \varphi \circ G)=\mathbb{E} F \mathbb{E} \varphi \circ G+\mathbb{E} \varphi^{\prime} \circ G\left\langle\bar{D} G,-\bar{D} \Delta^{-1} F\right\rangle_{H} .
$$

Proof.

$$
\mathbb{E}((F-\mathbb{E}(F))(\varphi \circ G))
$$

$\mathbb{E}\left(\left(\Delta \Delta^{-1} F\right)(\varphi \circ G)\right)$

Lemma

Let $F, G \in \mathfrak{D}(\bar{D})$.
Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} with bounded first derivatives.
Then we have

$$
\mathbb{E}(F \varphi \circ G)=\mathbb{E} F \mathbb{E} \varphi \circ G+\mathbb{E} \varphi^{\prime} \circ G\left\langle\bar{D} G,-\bar{D} \Delta^{-1} F\right\rangle_{H}
$$

Proof.

$$
\begin{aligned}
\mathbb{E}((F-\mathbb{E}(F))(\varphi \circ G)) & =\mathbb{E}\left(\left(\Delta \Delta^{-1} F\right)(\varphi \circ G)\right) \\
& =\mathbb{E}\left(\left(-\operatorname{Div} \bar{D} \Delta^{-1} F\right)(\varphi \circ G)\right) \\
& =\mathbb{E}\left(\left\langle-\bar{D} \Delta^{-1} F, \bar{D} \varphi \circ G\right)_{H}\right) \\
& =\mathbb{E}\left(\varphi^{\prime} \circ G\left(-\bar{D} \Delta^{-1} F, \bar{D} G\right)_{H}\right) \\
& =\mathbb{E}\left(\varphi^{\prime} \circ G\left(\bar{D} G,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right)
\end{aligned}
$$

Lemma

Let $F, G \in \mathfrak{D}(\bar{D})$.
Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} with bounded first derivatives.
Then we have

$$
\mathbb{E}(F \varphi \circ G)=\mathbb{E} F \mathbb{E} \varphi \circ G+\mathbb{E} \varphi^{\prime} \circ G\left\langle\bar{D} G,-\bar{D} \Delta^{-1} F\right\rangle_{H}
$$

Proof.

$$
\begin{aligned}
\mathbb{E}((F-\mathbb{E}(F))(\varphi \circ G)) & =\mathbb{E}\left(\left(\Delta \Delta^{-1} F\right)(\varphi \circ G)\right) \\
& =\mathbb{E}\left(\left(-\operatorname{Div} \bar{D} \Delta^{-1} F\right)(\varphi \circ G)\right) \\
& =\mathbb{E}\left(\left\langle-\bar{D} \Delta^{-1} F, \bar{D} \varphi \circ G\right)_{H}\right) \\
& =\mathbb{E}\left(\varphi^{\prime} \circ G\left(-\bar{D} \Delta^{-1} F, \bar{D} G\right)_{H}\right) \\
& =\mathbb{E}\left(\varphi^{\prime} \circ G\left(\bar{D} G,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right)
\end{aligned}
$$

Lemma

Let $F, G \in \mathfrak{D}(\bar{D})$.
Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} with bounded first derivatives.
Then we have

$$
\mathbb{E}(F \varphi \circ G)=\mathbb{E} F \mathbb{E} \varphi \circ G+\mathbb{E} \varphi^{\prime} \circ G\left\langle\bar{D} G,-\bar{D} \Delta^{-1} F\right\rangle_{H}
$$

Proof.

$$
\begin{aligned}
\mathbb{E}((F-\mathbb{E}(F))(\varphi \circ G)) & =\mathbb{E}\left(\left(\Delta \Delta^{-1} F\right)(\varphi \circ G)\right) \\
& =\mathbb{E}\left(\left(-\operatorname{Div} \bar{D} \Delta^{-1} F\right)(\varphi \circ G)\right) \\
& =\mathbb{E}\left(\left\langle-\bar{D} \Delta^{-1} F, \bar{D} \varphi \circ G\right\rangle_{H}\right) \\
& =\mathbb{E}\left(\varphi^{\prime} \circ G\left(-\bar{D} \Delta^{-1} F, \bar{D} G\right)_{H}\right) \\
& =\mathbb{E}\left(\varphi^{\prime} \circ G\left(\bar{D} G,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right)
\end{aligned}
$$

Lemma

Let $F, G \in \mathfrak{D}(\bar{D})$.
Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} with bounded first derivatives.
Then we have

$$
\mathbb{E}(F \varphi \circ G)=\mathbb{E} F \mathbb{E} \varphi \circ G+\mathbb{E} \varphi^{\prime} \circ G\left\langle\bar{D} G,-\bar{D} \Delta^{-1} F\right\rangle_{H}
$$

Proof.

$$
\begin{aligned}
\mathbb{E}((F-\mathbb{E}(F))(\varphi \circ G)) & =\mathbb{E}\left(\left(\Delta \Delta^{-1} F\right)(\varphi \circ G)\right) \\
& =\mathbb{E}\left(\left(-\operatorname{Div} \bar{D} \Delta^{-1} F\right)(\varphi \circ G)\right) \\
& =\mathbb{E}\left(\left\langle-\bar{D} \Delta^{-1} F, \bar{D} \varphi \circ G\right\rangle_{H}\right) \\
& =\mathbb{E}\left(\varphi^{\prime} \circ G\left\langle-\bar{D} \Delta^{-1} F, \bar{D} G\right\rangle_{H}\right) \\
& =\mathbb{E}\left(\varphi^{\prime} \circ G\left(\bar{D} G,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right)
\end{aligned}
$$

Lemma

Let $F, G \in \mathfrak{D}(\bar{D})$.
Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} with bounded first derivatives.
Then we have

$$
\mathbb{E}(F \varphi \circ G)=\mathbb{E} F \mathbb{E} \varphi \circ G+\mathbb{E} \varphi^{\prime} \circ G\left\langle\bar{D} G,-\bar{D} \Delta^{-1} F\right\rangle_{H}
$$

Proof.

$$
\begin{aligned}
\mathbb{E}((F-\mathbb{E}(F))(\varphi \circ G)) & =\mathbb{E}\left(\left(\Delta \Delta^{-1} F\right)(\varphi \circ G)\right) \\
& =\mathbb{E}\left(\left(-\operatorname{Div} \bar{D} \Delta^{-1} F\right)(\varphi \circ G)\right) \\
& =\mathbb{E}\left(\left\langle-\bar{D} \Delta^{-1} F, \bar{D} \varphi \circ G\right\rangle_{H}\right) \\
& =\mathbb{E}\left(\varphi^{\prime} \circ G\left\langle-\bar{D} \Delta^{-1} F, \bar{D} G\right\rangle_{H}\right) \\
& =\mathbb{E}\left(\varphi^{\prime} \circ G\left\langle\bar{D} G,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right)
\end{aligned}
$$

Corollary

Let $F \in \mathfrak{D}(\bar{D})$ be centered. Then we have

$$
\operatorname{Var}(F)=\mathbb{E}\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H} .
$$

Corollary

Let $F \in \mathfrak{D}(\bar{D})$ be centered. Then we have

$$
\operatorname{Var}(F)=\mathbb{E}\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H} .
$$

Proof. Let $\varphi(x):=x$. Then we have
$\operatorname{Var}(F)=\mathbb{E}(F \varphi \circ F)=\mathbb{E} F E \varphi \circ F+\mathbb{E} \varphi^{\prime} \circ F\langle D F,-D \triangle$

Corollary

Let $F \in \mathfrak{D}(\bar{D})$ be centered. Then we have

$$
\operatorname{Var}(F)=\mathbb{E}\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}
$$

Proof. Let $\varphi(x):=x$. Then we have
$\operatorname{Var}(F)=\mathbb{E}(F \varphi \circ F)=\mathbb{E} F \mathbb{E} \varphi \circ F+\mathbb{E} \varphi^{\prime} \circ F\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}=\mathbb{E}\langle\bar{D} F,-\bar{D} \Delta$

Corollary

Let $F \in \mathfrak{D}(\bar{D})$ be centered. Then we have

$$
\operatorname{Var}(F)=\mathbb{E}\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}
$$

Proof. Let $\varphi(x):=x$. Then we have
$\operatorname{Var}(F)=\mathbb{E}(F \varphi \circ F)=\mathbb{E} F \mathbb{E} \varphi \circ F+\mathbb{E} \varphi^{\prime} \circ F\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}=\mathbb{E}\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}$

Proposition

Let $F \in \mathfrak{D}(\bar{D})$ be centered and assume that $\mathbb{E} F^{2}=1$. Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} and assume that $\left|\varphi^{\prime}\right| \leq K$ for a $K \in[0, \infty)$. Then we have

$$
\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E}(F \cdot \varphi \circ F)\right| \leq K \mathbb{E}\left|1-\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| .
$$

Proof.

The assertions remains true if $\varphi \in \operatorname{Lip}(K)$ and if one assumes in addition that F has a density, w.r.t. the one dimensional Lebesgue measure.

Proposition

Let $F \in \mathfrak{D}(\bar{D})$ be centered and assume that $\mathbb{E} F^{2}=1$. Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} and assume that $\left|\varphi^{\prime}\right| \leq K$ for a $K \in[0, \infty)$. Then we have

$$
\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E}(F \cdot \varphi \circ F)\right| \leq K \mathbb{E}\left|1-\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| .
$$

Proof.
$\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E}(F \cdot \varphi \circ F)\right|$

The assertions remains true if $\varphi \in \operatorname{Lip}(K)$ and if one assumes in addition that F has a density, w.r.t. the one dimensional Lebesgue measure.

Proposition

Let $F \in \mathfrak{D}(\bar{D})$ be centered and assume that $\mathbb{E} F^{2}=1$.
Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} and assume that $\left|\varphi^{\prime}\right| \leq K$ for a $K \in[0, \infty)$.
Then we have

$$
\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E}(F \cdot \varphi \circ F)\right| \leq K \mathbb{E}\left|1-\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| .
$$

Proof.
$\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E}(F \cdot \varphi \circ F)\right|=\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E} F \mathbb{E} \varphi \circ F-\mathbb{E} \varphi^{\prime} \circ F\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right|$

$K \cdot \mathbb{E}\left|1-\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right|$.

The assertions remains true if $\varphi \in \operatorname{Lip}(K)$ and if one assumes in addition that F has a density, w.r.t. the one dimensional Lebesgue measure.

Proposition

Let $F \in \mathfrak{D}(\bar{D})$ be centered and assume that $\mathbb{E} F^{2}=1$.
Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} and assume that $\left|\varphi^{\prime}\right| \leq K$ for a $K \in[0, \infty)$.
Then we have

$$
\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E}(F \cdot \varphi \circ F)\right| \leq K \mathbb{E}\left|1-\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| .
$$

Proof.

$$
\begin{aligned}
\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E}(F \cdot \varphi \circ F)\right| & =\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E} F \mathbb{E} \varphi \circ F-\mathbb{E} \varphi^{\prime} \circ F\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| \\
& =\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E} \varphi^{\prime} \circ F\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right|
\end{aligned}
$$

Proposition

Let $F \in \mathfrak{D}(\bar{D})$ be centered and assume that $\mathbb{E} F^{2}=1$.
Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} and assume that $\left|\varphi^{\prime}\right| \leq K$ for a $K \in[0, \infty)$.
Then we have

$$
\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E}(F \cdot \varphi \circ F)\right| \leq K \mathbb{E}\left|1-\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| .
$$

Proof.

$$
\begin{aligned}
\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E}(F \cdot \varphi \circ F)\right| & =\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E} F \mathbb{E} \varphi \circ F-\mathbb{E} \varphi^{\prime} \circ F\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| \\
& =\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E} \varphi^{\prime} \circ F\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| \\
& =\left|\mathbb{E}\left(\varphi^{\prime} \circ F \cdot\left(1-\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right)\right)\right|
\end{aligned}
$$

Proposition

Let $F \in \mathfrak{D}(\bar{D})$ be centered and assume that $\mathbb{E} F^{2}=1$.
Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} and assume that $\left|\varphi^{\prime}\right| \leq K$ for a $K \in[0, \infty)$.
Then we have

$$
\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E}(F \cdot \varphi \circ F)\right| \leq K \mathbb{E}\left|1-\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| .
$$

Proof.

$$
\begin{aligned}
\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E}(F \cdot \varphi \circ F)\right| & =\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E} F \mathbb{E} \varphi \circ F-\mathbb{E} \varphi^{\prime} \circ F\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| \\
& =\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E} \varphi^{\prime} \circ F\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| \\
& =\left|\mathbb{E}\left(\varphi^{\prime} \circ F \cdot\left(1-\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right)\right)\right| \\
& \leq K \cdot \mathbb{E}\left|1-\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| .
\end{aligned}
$$

Proposition

Let $F \in \mathfrak{D}(\bar{D})$ be centered and assume that $\mathbb{E} F^{2}=1$.
Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} and assume that $\left|\varphi^{\prime}\right| \leq K$ for a $K \in[0, \infty)$.
Then we have

$$
\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E}(F \cdot \varphi \circ F)\right| \leq K \mathbb{E}\left|1-\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| .
$$

Proof.

$$
\begin{aligned}
\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E}(F \cdot \varphi \circ F)\right| & =\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E} F \mathbb{E} \varphi \circ F-\mathbb{E} \varphi^{\prime} \circ F\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| \\
& =\left|\mathbb{E} \varphi^{\prime} \circ F-\mathbb{E} \varphi^{\prime} \circ F\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| \\
& =\left|\mathbb{E}\left(\varphi^{\prime} \circ F \cdot\left(1-\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right)\right)\right| \\
& \leq K \cdot \mathbb{E}\left|1-\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| .
\end{aligned}
$$

Remark

The assertions remains true if $\varphi \in \operatorname{Lip}(K)$ and if one assumes in addition that F has a density, w.r.t. the one dimensional Lebesgue measure.

Definition

The total variation distance d_{TV} is defined by

$$
d_{\mathrm{Tv}}(X ; Y):=\sup _{B \in \mathfrak{B}(\mathbb{R})}|\mathbb{P}(X \in B)-\mathbb{P}(Y \in B)|,
$$

for all random variables $X, Y: \Omega \rightarrow \mathbb{R}$.

Moreover, the Wasserstein distance d_{w} is defined by

for all random variables X, Y, such that $\varphi(X), \varphi(Y) \in L^{1}(\Omega)$ for all $\varphi \in \operatorname{Lip(1).}$

Definition

The total variation distance d_{TV} is defined by

$$
d_{\mathrm{Tv}}(X ; Y):=\sup _{B \in \mathfrak{B}(\mathbb{R})}|\mathbb{P}(X \in B)-\mathbb{P}(Y \in B)|,
$$

for all random variables $X, Y: \Omega \rightarrow \mathbb{R}$.

Definition

Moreover, the Wasserstein distance d_{w} is defined by

$$
d_{\mathrm{W}}(X ; Y):=\sup _{\varphi \in \operatorname{Lip}(1)}|\mathbb{E} \varphi(X)-\mathbb{E} \varphi(Y)|
$$

for all random variables X, Y, such that $\varphi(X), \varphi(Y) \in L^{1}(\Omega)$ for all $\varphi \in \operatorname{Lip}(1)$.

Theorem
Let $F \in \mathfrak{D}(\bar{D})$ be centered, introduce $\sigma^{2}:=\operatorname{Var}(F) \neq 0$ and $N \sim N\left(0, \sigma^{2}\right)$. Then we have

$$
d_{W}(F ; N) \leq \frac{\sqrt{2}}{\sigma \sqrt{\pi}} \mathbb{E}\left|\sigma^{2}-\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| .
$$

Theorem
Let $F \in \mathfrak{D}(\bar{D})$ be centered, introduce $\sigma^{2}:=\operatorname{Var}(F) \neq 0$ and $N \sim N\left(0, \sigma^{2}\right)$. Then we have

$$
d_{W}(F ; N) \leq \frac{\sqrt{2}}{\sigma \sqrt{\pi}} \mathbb{E}\left|\sigma^{2}-\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| .
$$

Remark

We have $\sigma^{2}=\mathbb{E}\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}$.

Proof

Let $M \sim N(0,1)$ then it has already been proven that

$$
d_{W}(F ; M) \leq \sup \left(\left|\mathbb{E} \varphi^{\prime}(F)-\mathbb{E} F \varphi(F)\right|: \varphi \in C^{1}(\mathbb{R}),\left|\varphi^{\prime}\right| \leq \sqrt{\frac{2}{\pi}}\right)
$$

(The latter is true for any square integrable F, not just for our particular one.)

Proof

Let $M \sim N(0,1)$ then it has already been proven that

$$
d_{W}(F ; M) \leq \sup \left(\left|\mathbb{E} \varphi^{\prime}(F)-\mathbb{E} F \varphi(F)\right|: \varphi \in C^{1}(\mathbb{R}),\left|\varphi^{\prime}\right| \leq \sqrt{\frac{2}{\pi}}\right)
$$

(The latter is true for any square integrable F, not just for our particular one.)
$\left.d_{W}(F ; N)=\sigma \sup _{\varphi \in \operatorname{Lip}(1)} \mathbb{E} \varphi\left(\frac{F}{\sigma}\right)-\mathbb{E} \varphi\left(\frac{N}{\sigma}\right) \right\rvert\,$

Proof

Let $M \sim N(0,1)$ then it has already been proven that

$$
d_{W}(F ; M) \leq \sup \left(\left|\mathbb{E} \varphi^{\prime}(F)-\mathbb{E} F \varphi(F)\right|: \varphi \in C^{1}(\mathbb{R}),\left|\varphi^{\prime}\right| \leq \sqrt{\frac{2}{\pi}}\right)
$$

(The latter is true for any square integrable F, not just for our particular one.)

$$
d_{W}(F ; N)=\sigma \sup _{\varphi \in \operatorname{Lip}(1)}\left|\mathbb{E} \varphi\left(\frac{F}{\sigma}\right)-\mathbb{E} \varphi\left(\frac{N}{\sigma}\right)\right|
$$

Proof

Let $M \sim N(0,1)$ then it has already been proven that

$$
d_{W}(F ; M) \leq \sup \left(\left|\mathbb{E} \varphi^{\prime}(F)-\mathbb{E} F \varphi(F)\right|: \varphi \in C^{1}(\mathbb{R}),\left|\varphi^{\prime}\right| \leq \sqrt{\frac{2}{\pi}}\right)
$$

(The latter is true for any square integrable F, not just for our particular one.)

$$
\begin{aligned}
d_{w}(F ; N) & =\sigma \sup _{\varphi \in \operatorname{Lip}(1)}\left|\mathbb{E} \varphi\left(\frac{F}{\sigma}\right)-\mathbb{E} \varphi\left(\frac{N}{\sigma}\right)\right| \\
& =\sigma d_{W}\left(\frac{F}{\sigma} ; \frac{N}{\sigma}\right)
\end{aligned}
$$

Proof

Let $M \sim N(0,1)$ then it has already been proven that

$$
d_{W}(F ; M) \leq \sup \left(\left|\mathbb{E} \varphi^{\prime}(F)-\mathbb{E} F \varphi(F)\right|: \varphi \in C^{1}(\mathbb{R}),\left|\varphi^{\prime}\right| \leq \sqrt{\frac{2}{\pi}}\right)
$$

(The latter is true for any square integrable F, not just for our particular one.)

$$
\begin{aligned}
d_{\mathrm{W}}(F ; N) & =\sigma \sup _{\varphi \in \operatorname{Lip}(1)}\left|\mathbb{E} \varphi\left(\frac{F}{\sigma}\right)-\mathbb{E} \varphi\left(\frac{N}{\sigma}\right)\right| \\
& =\sigma d_{\mathrm{w}}\left(\frac{F}{\sigma} ; \frac{N}{\sigma}\right) \\
& \leq \sigma \sup \left(\left|\mathbb{E} \varphi^{\prime}\left(\frac{F}{\sigma}\right)-\mathbb{E} \frac{F}{\sigma} \varphi\left(\frac{F}{\sigma}\right)\right|: \varphi \in C^{1}(\mathbb{R}),\left|\varphi^{\prime}\right| \leq \sqrt{\frac{2}{\pi}}\right)
\end{aligned}
$$

Proof

Let $M \sim N(0,1)$ then it has already been proven that

$$
d_{W}(F ; M) \leq \sup \left(\left|\mathbb{E} \varphi^{\prime}(F)-\mathbb{E} F \varphi(F)\right|: \varphi \in C^{1}(\mathbb{R}),\left|\varphi^{\prime}\right| \leq \sqrt{\frac{2}{\pi}}\right)
$$

(The latter is true for any square integrable F, not just for our particular one.)

$$
\begin{aligned}
d_{\mathrm{W}}(F ; N) & =\sigma \sup _{\varphi \in \operatorname{Lip}(1)}\left|\mathbb{E} \varphi\left(\frac{F}{\sigma}\right)-\mathbb{E} \varphi\left(\frac{N}{\sigma}\right)\right| \\
& =\sigma d_{\mathrm{W}}\left(\frac{F}{\sigma} ; \frac{N}{\sigma}\right) \\
& \leq \sigma \sup \left(\left|\mathbb{E} \varphi^{\prime}\left(\frac{F}{\sigma}\right)-\mathbb{E} \frac{F}{\sigma} \varphi\left(\frac{F}{\sigma}\right)\right|: \varphi \in C^{1}(\mathbb{R}),\left|\varphi^{\prime}\right| \leq \sqrt{\frac{2}{\pi}}\right) \\
& \leq \sigma \sqrt{\frac{2}{\pi}} \mathbb{E}\left|1-\left\langle\bar{D}\left(\frac{F}{\sigma}\right),-\bar{D} \Delta^{-1}\left(\frac{F}{\sigma}\right)\right\rangle_{H}\right|
\end{aligned}
$$

Proof

Let $M \sim N(0,1)$ then it has already been proven that

$$
d_{W}(F ; M) \leq \sup \left(\left|\mathbb{E} \varphi^{\prime}(F)-\mathbb{E} F \varphi(F)\right|: \varphi \in C^{1}(\mathbb{R}),\left|\varphi^{\prime}\right| \leq \sqrt{\frac{2}{\pi}}\right)
$$

(The latter is true for any square integrable F, not just for our particular one.)

$$
\begin{aligned}
d_{W}(F ; N) & =\sigma \sup _{\varphi \in \operatorname{Lip}(1)}\left|\mathbb{E} \varphi\left(\frac{F}{\sigma}\right)-\mathbb{E} \varphi\left(\frac{N}{\sigma}\right)\right| \\
& =\sigma d_{W}\left(\frac{F}{\sigma} ; \frac{N}{\sigma}\right) \\
& \leq \sigma \sup \left(\left|\mathbb{E} \varphi^{\prime}\left(\frac{F}{\sigma}\right)-\mathbb{E} \frac{F}{\sigma} \varphi\left(\frac{F}{\sigma}\right)\right|: \varphi \in C^{1}(\mathbb{R}),\left|\varphi^{\prime}\right| \leq \sqrt{\frac{2}{\pi}}\right) \\
& \leq \sigma \sqrt{\frac{2}{\pi}} \mathbb{E}\left|1-\left\langle\bar{D}\left(\frac{F}{\sigma}\right),-\bar{D} \Delta^{-1}\left(\frac{F}{\sigma}\right)\right\rangle_{H}\right| \\
& =\frac{\sqrt{2}}{\sigma \sqrt{\pi}} \mathbb{E}\left|\sigma^{2}-\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right|
\end{aligned}
$$

Remark

Let $F \in \mathfrak{D}(\bar{D})$ be centered, introduce $\sigma^{2}:=\operatorname{Var}(F) \neq 0$ and $N \sim N\left(0, \sigma^{2}\right)$. Moreover, assume that F has a density. Then we have

$$
d_{\mathrm{TV}}(F ; N) \leq \frac{2}{\sigma^{2}} \mathbb{E}\left|\sigma^{2}-\left\langle\bar{D} F,-\bar{D} \Delta^{-1} F\right\rangle_{H}\right| .
$$

This is proven absolutely analogously to the previous theorem.

Central Limit Theorem

Let $\left(F_{m}\right)_{m \in \mathbb{N}} \subseteq \mathfrak{D}(\bar{D})$ be a sequence of centered, non constant random variables, introduce $\sigma_{m}^{2}:=\operatorname{Var}\left(F_{m}\right)$ and let $\sigma^{2} \in(0, \infty)$.
Moreover, assume that

$$
\lim _{m \rightarrow \infty}\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}=\sigma^{2}
$$

in $L^{1}(\Omega)$.
Then we have

$$
\lim _{m \rightarrow \infty} \frac{F_{m}}{\sigma_{m}}=N(0,1)
$$

in law.

Proof

Firstly, we have

$$
\lim _{m \rightarrow \infty} \sigma_{m}^{2}=\lim _{m \rightarrow \infty} \operatorname{Var}\left(F_{m}\right)=\lim _{m \rightarrow \infty} \mathbb{E}\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}=\sigma^{2}
$$

Now let N be standard Gaussian. Then we have

$$
\begin{aligned}
& \leq \lim _{m \rightarrow \infty} \frac{\sqrt{2}}{\sqrt{\pi}} \mathbb{E}\left|1-\frac{1}{\sigma_{m}^{2}}\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}\right| \\
& =\lim _{m \rightarrow \infty} \frac{1}{\sigma_{m}^{2}} \frac{\sqrt{2}}{\sqrt{\pi}} \mathbb{E}\left|\sigma_{m}^{2}-\sigma^{2}+\sigma^{2}-\left\langle\bar{D} F_{m,}-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}\right| \\
& \leq \lim _{m \rightarrow \infty} \frac{1}{\sigma_{m}^{2}} \frac{\sqrt{2}}{\sqrt{\pi}}\left|\sigma_{m}^{2}-\sigma^{2}\right|+\frac{1}{\sigma_{m}^{2}} \frac{\sqrt{2}}{\sqrt{\pi}} \mathbb{E}\left|\sigma^{2}-\left\langle\bar{D} F_{m,}-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}\right|
\end{aligned}
$$

Proof

Firstly, we have

$$
\lim _{m \rightarrow \infty} \sigma_{m}^{2}=\lim _{m \rightarrow \infty} \operatorname{Var}\left(F_{m}\right)=\lim _{m \rightarrow \infty} \mathbb{E}\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}=\sigma^{2}
$$

Now let N be standard Gaussian. Then we have
$\lim _{m \rightarrow \infty} d_{W}\left(\frac{F_{m}}{\sigma_{m}} ; N\right)$

Proof

Firstly, we have

$$
\lim _{m \rightarrow \infty} \sigma_{m}^{2}=\lim _{m \rightarrow \infty} \operatorname{Var}\left(F_{m}\right)=\lim _{m \rightarrow \infty} \mathbb{E}\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}=\sigma^{2}
$$

Now let N be standard Gaussian. Then we have
$\lim _{m \rightarrow \infty} d_{W}\left(\frac{F_{m}}{\sigma_{m}} ; N\right) \leq \lim _{m \rightarrow \infty} \frac{\sqrt{2}}{\sqrt{\pi}} \mathbb{E}\left|1-\frac{1}{\sigma_{m}^{2}}\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}\right|$

Proof

Firstly, we have

$$
\lim _{m \rightarrow \infty} \sigma_{m}^{2}=\lim _{m \rightarrow \infty} \operatorname{Var}\left(F_{m}\right)=\lim _{m \rightarrow \infty} \mathbb{E}\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}=\sigma^{2}
$$

Now let N be standard Gaussian. Then we have

$$
\begin{aligned}
\lim _{m \rightarrow \infty} d_{W}\left(\frac{F_{m}}{\sigma_{m}} ; N\right) & \leq \lim _{m \rightarrow \infty} \frac{\sqrt{2}}{\sqrt{\pi}} \mathbb{E}\left|1-\frac{1}{\sigma_{m}^{2}}\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}\right| \\
& =\lim _{m \rightarrow \infty} \frac{1}{\sigma_{m}^{2}} \frac{\sqrt{2}}{\sqrt{\pi}} \mathbb{E}\left|\sigma_{m}^{2}-\sigma^{2}+\sigma^{2}-\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}\right|
\end{aligned}
$$

Proof

Firstly, we have

$$
\lim _{m \rightarrow \infty} \sigma_{m}^{2}=\lim _{m \rightarrow \infty} \operatorname{Var}\left(F_{m}\right)=\lim _{m \rightarrow \infty} \mathbb{E}\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}=\sigma^{2}
$$

Now let N be standard Gaussian. Then we have

$$
\begin{aligned}
\lim _{m \rightarrow \infty} d_{W}\left(\frac{F_{m}}{\sigma_{m}} ; N\right) & \leq \lim _{m \rightarrow \infty} \frac{\sqrt{2}}{\sqrt{\pi}} \mathbb{E}\left|1-\frac{1}{\sigma_{m}^{2}}\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}\right| \\
& =\lim _{m \rightarrow \infty} \frac{1}{\sigma_{m}^{2}} \frac{\sqrt{2}}{\sqrt{\pi}} \mathbb{E}\left|\sigma_{m}^{2}-\sigma^{2}+\sigma^{2}-\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}\right| \\
& \leq \lim _{m \rightarrow \infty} \frac{1}{\sigma_{m}^{2}} \frac{\sqrt{2}}{\sqrt{\pi}}\left|\sigma_{m}^{2}-\sigma^{2}\right|+\frac{1}{\sigma_{m}^{2}} \frac{\sqrt{2}}{\sqrt{\pi}} \mathbb{E}\left|\sigma^{2}-\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}\right|
\end{aligned}
$$

Proof

Firstly, we have

$$
\lim _{m \rightarrow \infty} \sigma_{m}^{2}=\lim _{m \rightarrow \infty} \operatorname{Var}\left(F_{m}\right)=\lim _{m \rightarrow \infty} \mathbb{E}\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}=\sigma^{2}
$$

Now let N be standard Gaussian. Then we have

$$
\begin{aligned}
\lim _{m \rightarrow \infty} d_{\mathrm{w}}\left(\frac{F_{m}}{\sigma_{m}} ; N\right) & \leq \lim _{m \rightarrow \infty} \frac{\sqrt{2}}{\sqrt{\pi}} \mathbb{E}\left|1-\frac{1}{\sigma_{m}^{2}}\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}\right| \\
& =\lim _{m \rightarrow \infty} \frac{1}{\sigma_{m}^{2}} \frac{\sqrt{2}}{\sqrt{\pi}} \mathbb{E}\left|\sigma_{m}^{2}-\sigma^{2}+\sigma^{2}-\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}\right| \\
& \leq \lim _{m \rightarrow \infty} \frac{1}{\sigma_{m}^{2}} \frac{\sqrt{2}}{\sqrt{\pi}}\left|\sigma_{m}^{2}-\sigma^{2}\right|+\frac{1}{\sigma_{m}^{2}} \frac{\sqrt{2}}{\sqrt{\pi}} \mathbb{E}\left|\sigma^{2}-\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}\right| \\
& =0 .
\end{aligned}
$$

Remark

1. We just proved a CLT without directly stating any independence assumptions.
2. How does one verify that $\lim \left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}=\sigma^{2}$? How does one even choose the Hilbert space?

Remark

1. We just proved a CLT without directly stating any independence assumptions.
2. How does one verify that $\lim _{m \rightarrow \infty}\left\langle\bar{D} F_{m},-\bar{D} \Delta^{-1} F_{m}\right\rangle_{H}=\sigma^{2}$? How does one even choose the Hilbert space?

Content

1. Basic Definitions
2. A general CLT
3. CLT for stationary Gaussian sequences

Definitions

1. γ denotes the standard Gaussian measure and W_{n} the hermite polynomials.
2. $f \in L^{2}(\mathbb{R}, \mathfrak{B}(\mathbb{R}), \gamma)$ is a fixed non-constant function such that $\int_{\mathbb{R}} f d \gamma=0$.
3. $\left(a_{n}\right)_{n \in \mathbb{N}}$ is such that $f=\sum_{n=1}^{\infty} a_{n} W_{n}$, where the latter convergence is understood in $L^{2}(\mathbb{R}, \mathfrak{B}(\mathbb{R}), \gamma)$.
4. The Hermite rank of f is defined by $d_{f}:=\inf \left\{n \in \mathbb{N} \mid a_{1}=\ldots=a_{n-1}=0, a_{n} \neq 0\right\}<\infty$
5. $\left(X_{k}\right)_{k \in \mathbb{Z}}$ denote a centered, stationary, Gaussian sequence, such that $\operatorname{Var}\left(X_{k}\right)=1$ for one (and therefore every) $k \in \mathbb{N}$
6. $C(k):=\mathbb{E} X_{k} X_{0}$
7. $V_{m}:=\frac{1}{\sqrt{m}} \sum_{k=1}^{m} f\left(X_{k}\right)$

Remark

1. $\left(f\left(X_{k}\right)\right)_{k \in \mathbb{Z}}$ is also a stationary sequence. Particularly, it consists of identically random variables.
2. $\mathbb{E} f\left(X_{k}\right)=\int_{\mathbb{R}} f d \gamma=0$.

Remark
One can show that there is a separable Hilbert space H, an isonormal Gaussian process X and a sequence $\left(e_{k}\right)_{k \in \mathbb{Z}}$ such that

1. The closure of the linear span of $\left(e_{k}\right)_{k \in z}$ is H.
2. $\left\langle e_{k}, e_{j}\right\rangle_{H}=C(k-j)$ for all $k, j \in \mathbb{Z}$.
3. $X_{k}=X\left(e_{k}\right)$ for all $k \in \mathbb{Z}$.

Then one proves, using Malliavin Calculus, the following CLT:

Remark

1. $\left(f\left(X_{k}\right)\right)_{k \in \mathbb{Z}}$ is also a stationary sequence. Particularly, it consists of identically random variables.
2. $\mathbb{E} f\left(X_{k}\right)=\int_{\mathbb{R}} f d \gamma=0$.

Remark

One can show that there is a separable Hilbert space H, an isonormal Gaussian process X and a sequence $\left(e_{k}\right)_{k \in \mathbb{Z}}$ such that

1. The closure of the linear span of $\left(e_{k}\right)_{k \in \mathbb{Z}}$ is H.
2. $\left\langle\boldsymbol{e}_{\kappa}, e_{j}\right\rangle_{H}=C(k-j)$ for all $k, j \in \mathbb{Z}$.
3. $X_{k}=X\left(e_{k}\right)$ for all $k \in \mathbb{Z}$.

Then one proves, using Malliavin Calculus, the following CLT:

CLT for Functionals of stationary Gaussian Sequences

Assume that $\sum_{k \in \mathbb{Z}}|C(k)|^{d_{f}}<\infty$. Then we have

$$
\lim _{m \rightarrow \infty} V_{m}=N
$$

in law, where N is a centered Gaussian random variable, with

$$
\operatorname{Var}(N)=\sum_{j=d_{f}}^{\infty} j!a_{j}^{2} \sum_{k \in \mathbb{Z}} C(k)^{j} \in(0, \infty)
$$

CLT for the Increments of Fractional Brownian Motion
Let $\left(B_{t}\right)_{t \in \mathbb{R}}$ be a fractional Brownian motion with Hurst index $H \in\left(0,1-\frac{1}{2 q}\right)$, where $q \in \mathbb{N}$, with $q \neq 1$. Moreover, introduce

$$
X_{k}:=B_{k}-B_{k-1}, k \in \mathbb{Z} .
$$

and

$$
V_{m}:=\frac{1}{\sqrt{m}} \sum_{k=1}^{m} W_{q}\left(X_{k}\right) .
$$

Then we have

$$
\lim _{m \rightarrow \infty} V_{m}=N,
$$

in law, where N is a centered Gaussian random variable, with

$$
\operatorname{Var}(N)=\frac{q!}{2^{q}} \sum_{k \in \mathbb{Z}}\left(|k+1|^{2 H}+|k-1|^{2 H}-2|k|^{2 H}\right)^{q} .
$$

Proof

1. By definition we have $\mathbb{E} B_{t}=0$ and $\mathbb{E}\left(B_{t} B_{s}\right)=\frac{1}{2}\left(|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}\right)$.
2. Introduce $C(\nu):=\mathbb{E}\left(X_{k} X_{k+\nu}\right)$ for all $\nu \in \mathbb{Z}$ and an arbittrary $k \in \mathbb{Z}$.
3. A trivial calculation yields

$$
C(\nu)=\frac{1}{2}\left(|\nu-1|^{2 H}+|\nu+1|^{2 H}-2|\nu|^{2 H}\right)
$$

Consequently, $\left(X_{k}\right)_{k \in \mathbb{Z}}$ is a centered, stationary and has unit variance. 4. We already know that $\int_{\mathbb{D}} W_{q} d \gamma=0$.
5. Trivially $a_{n}=0$ if $n \neq q$ and $a_{n}=1$ if $n=q$.
6. Moreover, one verifies

$$
C(\nu)=H(2 H-1)|\nu|^{2 H-2}+O\left(|\nu|^{2 H-2}\right),
$$

as $\nu \rightarrow \infty$
Finally, the latter implies that $\sum_{\nu \in \mathbb{Z}} \mid C(\nu)^{q}<\infty$ which yields the claimed
convergence result.
7. The expression for the variance is trivial as $a_{n}=0$ if $n \neq q$ and $a_{n}=1$ if
$\bar{n}=\boldsymbol{q}$.

Proof

1. By definition we have $\mathbb{E} B_{t}=0$ and $\mathbb{E}\left(B_{t} B_{s}\right)=\frac{1}{2}\left(|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}\right)$.
2. Introduce $C(\nu):=\mathbb{E}\left(X_{k} X_{k+\nu}\right)$ for all $\nu \in \mathbb{Z}$ and an arbitrary $k \in \mathbb{Z}$.
3. A trivial calculation yields

Consequently, $\left(X_{k}\right)_{k \in \mathbb{Z}}$ is a centered, stationary and has unit variance.
4. We already know that $\int W_{q} d \gamma=0$.
5. Trivially $a_{n}=0$ if $n \neq q$ and $a_{n}=1$ if $n=q$.
6. Moreover, one verifies

Finally, the latter implies that $\sum|C(\nu)|^{a}<\infty$ which yields the claimed
convergence result.
7. The expression for the variance is trivial as $a_{n}=0$ if $n \neq q$ and $a_{n}=1$ if
$n=q$.

Proof

1. By definition we have $\mathbb{E} B_{t}=0$ and $\mathbb{E}\left(B_{t} B_{s}\right)=\frac{1}{2}\left(|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}\right)$.
2. Introduce $C(\nu):=\mathbb{E}\left(X_{k} X_{k+\nu}\right)$ for all $\nu \in \mathbb{Z}$ and an arbitrary $k \in \mathbb{Z}$.
3. A trivial calculation yields

$$
C(\nu)=\frac{1}{2}\left(|\nu-1|^{2 H}+|\nu+1|^{2 H}-2|\nu|^{2 H}\right)
$$

Consequently, $\left(X_{k}\right)_{k \in \mathbb{Z}}$ is a centered, stationary and has unit variance.
4. We already know that $\int_{\mathbb{R}} W_{q} d \gamma=0$.
5. Trivially $a_{n}=0$ if $n \neq q$ and $a_{n}=1$ if $n=q$.
6. Moreover, one verifies

Finally, the latter implies that $\sum|C(\nu)|^{q}<\infty$ which yields the claimed
convergence result.
7. The expression for the variance is trivial as $a_{n}=0$ if $n \neq q$ and $a_{n}=1$ if
$n=q$.

Proof

1. By definition we have $\mathbb{E} B_{t}=0$ and $\mathbb{E}\left(B_{t} B_{s}\right)=\frac{1}{2}\left(|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}\right)$.
2. Introduce $C(\nu):=\mathbb{E}\left(X_{k} X_{k+\nu}\right)$ for all $\nu \in \mathbb{Z}$ and an arbitrary $k \in \mathbb{Z}$.
3. A trivial calculation yields

$$
C(\nu)=\frac{1}{2}\left(|\nu-1|^{2 H}+|\nu+1|^{2 H}-2|\nu|^{2 H}\right)
$$

Consequently, $\left(X_{k}\right)_{k \in \mathbb{Z}}$ is a centered, stationary and has unit variance.
4. We already know that $\int_{\mathbb{R}} W_{q} d \gamma=0$.
5. Irivially $a_{n}=0$ if $n \neq q$
6. Moreover, one verifies

Finally, the latter implies that $\sum|C(\nu)|^{a}<\infty$ which yields the claimed
convergence result.
7. The expression for the variance is trivial as $a_{n}=0$ if $n \neq q$ and $a_{n}=1$ if
$n=q$.

Proof

1. By definition we have $\mathbb{E} B_{t}=0$ and $\mathbb{E}\left(B_{t} B_{s}\right)=\frac{1}{2}\left(|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}\right)$.
2. Introduce $C(\nu):=\mathbb{E}\left(X_{k} X_{k+\nu}\right)$ for all $\nu \in \mathbb{Z}$ and an arbitrary $k \in \mathbb{Z}$.
3. A trivial calculation yields

$$
C(\nu)=\frac{1}{2}\left(|\nu-1|^{2 H}+|\nu+1|^{2 H}-2|\nu|^{2 H}\right)
$$

Consequently, $\left(X_{k}\right)_{k \in \mathbb{Z}}$ is a centered, stationary and has unit variance.
4. We already know that $\int_{\mathbb{R}} W_{q} d \gamma=0$.
5. Trivially $a_{n}=0$ if $n \neq q$ and $a_{n}=1$ if $n=q$.

Finally, the latter implies that $\sum|C(\nu)|^{a}<\infty$ which yields the claimed
convergence result.
7. The expression for the variance is trivial as $a_{n}=0$ if $n \neq q$ and $a_{n}=1$ if
$n=q$.

Proof

1. By definition we have $\mathbb{E} B_{t}=0$ and $\mathbb{E}\left(B_{t} B_{s}\right)=\frac{1}{2}\left(|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}\right)$.
2. Introduce $C(\nu):=\mathbb{E}\left(X_{k} X_{k+\nu}\right)$ for all $\nu \in \mathbb{Z}$ and an arbitrary $k \in \mathbb{Z}$.
3. A trivial calculation yields

$$
C(\nu)=\frac{1}{2}\left(|\nu-1|^{2 H}+|\nu+1|^{2 H}-2|\nu|^{2 H}\right)
$$

Consequently, $\left(X_{k}\right)_{k \in \mathbb{Z}}$ is a centered, stationary and has unit variance.
4. We already know that $\int_{\mathbb{R}} W_{q} d \gamma=0$.
5. Trivially $a_{n}=0$ if $n \neq q$ and $a_{n}=1$ if $n=q$.
6. Moreover, one verifies

$$
C(\nu)=H(2 H-1)|\nu|^{2 H-2}+o\left(|\nu|^{2 H-2}\right), \text { as } \nu \rightarrow \infty
$$

Finally, the latter implies that $\sum_{\nu \in \mathbb{Z}}|C(\nu)|^{a}<\infty$ which yields the claimed convergence result

Proof

1. By definition we have $\mathbb{E} B_{t}=0$ and $\mathbb{E}\left(B_{t} B_{s}\right)=\frac{1}{2}\left(|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}\right)$.
2. Introduce $C(\nu):=\mathbb{E}\left(X_{k} X_{k+\nu}\right)$ for all $\nu \in \mathbb{Z}$ and an arbitrary $k \in \mathbb{Z}$.
3. A trivial calculation yields

$$
C(\nu)=\frac{1}{2}\left(|\nu-1|^{2 H}+|\nu+1|^{2 H}-2|\nu|^{2 H}\right)
$$

Consequently, $\left(X_{k}\right)_{k \in \mathbb{Z}}$ is a centered, stationary and has unit variance.
4. We already know that $\int_{\mathbb{R}} W_{q} d \gamma=0$.
5. Trivially $a_{n}=0$ if $n \neq q$ and $a_{n}=1$ if $n=q$.
6. Moreover, one verifies

$$
C(\nu)=H(2 H-1)|\nu|^{2 H-2}+o\left(|\nu|^{2 H-2}\right), \text { as } \nu \rightarrow \infty
$$

Finally, the latter implies that $\sum_{\nu \in \mathbb{Z}}|C(\nu)|^{a}<\infty$ which yields the claimed convergence result.
7. The expression for the variance is trivial as $a_{n}=0$ if $n \neq q$ and $a_{n}=1$ if $n=q$.

