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Definitions

1.

(22, %, P) denotes a probability space and (H, || - ||) a separable Hilbert
space

. X denotes an isonormal process, that is X : H — [2(Q) is centered,

Gaussian and unitary

m
D:®(D) — L*(Q; H) and DF := Y 2L(X(hy), ..., X(hm))h; for all
=1

F = f(X(hy), ..., X(hm)). D denotes the closure of D.
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projection on the n-th Wiener Chaos.
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Definitions

1.

(22, %, P) denotes a probability space and (H, || - ||) a separable Hilbert
space

. X denotes an isonormal process, that is X : H — [2(Q) is centered,

Gaussian and unitary

m
D:®(D) — L*(Q; H) and DF := Y 2L(X(hy), ..., X(hm))h; for all
=

F = f(X(hy), ..., X(hm)). D denotes the closure of D.

A :D(A) = [3(Q) and AF = — fj nP,F, where P, is the orthogonal

n=1

projection on the n-th Wiener Chaos.

5 A7 [3(Q) — D(A), such that AA™'F = F — EF.
6. Div: ©(Div) — L3(Q), where Div(F) is the uniquely determined element

fulfilling (F, Div(u)) 2(q) = (DF, U) 2. for all F € D(D)
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Lemma

1. Let F € [3(Q) then we have F € D(A) if and only if F € (D) and
DF € ©(Div). And in this case Div(DF) = —AF.
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Lemma

1. Let F € [3(Q) then we have F € D(A) if and only if F € (D) and
DF € ®(Div). And in this case Div(DF) = —AF.

2. Let F:=(Fi,...,Fn) € ©(D)™ and ¢ : R™ — R be continuously
differentiable with bounded first derivate. Then we have ¢ o F € ©(D)

and Dy o F = 3" 22 (F)DF;
=1 !
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Lemma

Let F, G € ®(D).

Let o : R — R be C' with bounded first derivatives.
Then we have

E(Fpo G) = EFEpo G+ Ey' o G(DG,—DA™"F)y.
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Let o : R — R be C' with bounded first derivatives.
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E(Fpo G) = EFEp o G+ Ey' o G(DG, —DA™'F)y.
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Lemma

Let F,G € ©(D).

Let o : R — R be C' with bounded first derivatives.
Then we have

E(Fpo G) = EFEp o G+ Ey' o G(DG, —DA™'F)y.
Proof.
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Lemma

Let F,G € ®(D).

Let o : R — R be C' with bounded first derivatives.
Then we have

E(Fpo G) = EFEpo G+ Ey' o G(DG,—DA™"F)y.
Proof.
E((F-E(F)poG) = E((aa'F)po0))

E ((—DivﬁA“F)(@ ° G))

E((-DA™'F, Dy o Gu)
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Lemma

Let F,G € ®(D).

Let o : R — R be C' with bounded first derivatives.
Then we have

E(Fpo G) = EFEpo G+ Ey' o G(DG,—DA™"F)y.

Proof.

E((F — E(F))(¢ o G)) E(AA F)( cpoG))

_ E( _DivDA"~ F(@OG))
]E( DA~ FD(pOG})
2 (

¢ o G(—DA™ FDG))
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Lemma

Let F,G € ®(D).

Let o : R — R be C' with bounded first derivatives.
Then we have

E(Fpo G) = EFEpo G+ Ey' o G(DG,—DA™"F)y.

Proof.

E((F — E(F))(¢ 0 G)) (AA7F)(p0G))

E((

]E( —DivDA~ F(@OG))
- ]E( DA~ FD(pOG})

E(Lp DA™ FDG))

E(

¢ o G(DG, —DA™ F>)
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Corollary

Let F € ©(D) be centered. Then we have
Var(F) = E(DF,—DA™'F).
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Corollary

Let F € ©(D) be centered. Then we have
Var(F) = E(DF,—DA™'F).
Proof. Let ¢(x) := x. Then we have

Var(F) =E(FpoF) =
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Corollary

Let F € ©(D) be centered. Then we have
Var(F) = E(DF,—DA™'F).
Proof. Let ¢(x) := x. Then we have

Var(F) = E(Fpo F) = EFEp o F + E¢' o F(DF,—~DA™'F)y =
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Corollary

Let F € ©(D) be centered. Then we have
Var(F) = E(DF,—DA™'F).
Proof. Let ¢(x) := x. Then we have

Var(F) = E(Fpo F) = EFEp o F + E¢' o F(DF, —~DA™'F); = E(DF, —DA™'F)y,
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Proposition

Let F € ©(D) be centered and assume that EF? = 1.

Let o : R — R be C' and assume that |¢'| < K fora K € [0, o).
Then we have

IE¢' o F—E(F - g o F)| < KE|1 — (DF, —~DA ™" F)4|.
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Let F € ©(D) be centered and assume that EF? = 1.

Let o : R — R be C' and assume that |¢'| < K fora K € [0, o).
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[Ep o F —E(F-poF) <KE[1 - <5F, —5A’1F>H|.
Proof.

|Eo' o F —E(F-poF)|
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Let F € ©(D) be centered and assume that EF? = 1.

Let o : R — R be C' and assume that |¢'| < K fora K € [0, o).
Then we have
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Proposition
Let F € ©(D) be centered and assume that EF? = 1.

Let o : R — R be C' and assume that |¢'| < K fora K € [0, o).
Then we have

B¢ o F —E(F-@oF)| < KE|1 — (DF, —DA™"F)4|.
Proof.
|[Ep' o F—E(F-poF) = |Eg oF —EFEpoF —Ey o F(DF,—DA™"F)y|

|Ep' o F —Ey' o F(DF, —DA™'F)4|
= [E(¢ o F-(1 - (DF,~DAT'F)))|
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Proposition

Let F € ©(D) be centered and assume that EF? = 1.
Let o : R — R be C' and assume that |¢'| < K fora K € [0, o).

Then we have

IE¢' o F —E(F - ¢ o F)| < KE[1 — (DF, —~DA™"F)y.

Proof.

|Eo' o F —E(F-poF)|

IN

|Ep' o F —EFEpo F —Ey' o F(DF, —DA™'F)4|
|Ep' o F —Ey' o F(DF, —DA™'F)4|

E(# o F - (1 — (DF, DA™ F)u)|

K-E[1 — (DF,—DA™'F)4|.
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Proposition

Let F € ©(D) be centered and assume that EF? = 1.

Let o : R — R be C' and assume that |¢'| < K fora K € [0, o).
Then we have

B¢ o F —E(F-@oF)| < KE|1 — (DF, —DA™"F)4|.

Proof.

[Eo'o F—E(F-poF)] = |E¢ oF —EFEpoF —Ey o F(DF, 75A71F>H|
= |E¢' o F —Ey' o F(DF,—DA™'F)4|
= |E(¢' o F-(1 = (DF,~DA™"F)n))|
< K-E[1—(DF,—DA™"F)y|.

Remark

The assertions remains true if ¢ € Lip(K) and if one assumes in addition that
F has a density, w.r.t. the one dimensional Lebesgue measure.
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Definition
The total variation distance dry is defined by

dv(X;Y) = sup |[P(X e B)—-P(Y e B),
BEB(R)

for all random variables X, Y : Q — R.
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Definition
The total variation distance dry is defined by

dv(X;Y) = sup |[P(X e B)—-P(Y e B),
BEB(R)

for all random variables X, Y : Q — R.

Definition
Moreover, the Wasserstein distance dy is defined by

dw(X; Y):= sup [Ep(X)—Ep(Y)],
pelip(1)

for all random variables X, Y, such that ¢(X), ¢(Y) € L'(Q) for all € Lip(1).
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Theorem
Let F € ©(D) be centered, introduce o2 := Var(F) # 0 and N ~ N(0, ¢?).
Then we have

dw(F; N) < %E\az — (DF,-DA™'F)yl.
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Theorem

Let F € ©(D) be centered, introduce o2 := Var(F) # 0 and N ~ N(0, ¢?).
Then we have

dw(F; N) < %E\az — (DF,-DA™'F)yl.

Remark - -
We have 0 = E(DF, —DA~"F)p.
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Proof
Let M ~ N(0, 1) then it has already been proven that

dw(F; M) < sup <|E¢’(F) —EF(F)|: ¢ € C'(R), |¢| < ﬁ) ,

(The latter is true for any square integrable F, not just for our particular one.)
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Proof
Let M ~ N(0, 1) then it has already been proven that

U U 2
dhu(F: M) < sup (IEw (F)~EFg(F)| - ¢ € C'(R), |¢/| < ﬁ) .
(The latter is true for any square integrable F, not just for our particular one.)

dw(F; N)
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Proof
Let M ~ N(0, 1) then it has already been proven that

dw(F; M) < sup <|]Ego’(F) —EF(F)|: ¢ € C'(R), |¢| < ﬁ) ,

(The latter is true for any square integrable F, not just for our particular one.)

= ()= (5))

aw(F;N) = o sup
pelip(1)
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Proof
Let M ~ N(0, 1) then it has already been proven that

dw(F; M) < sup <|E¢’(F) —EF(F)|: ¢ € C'(R), |¢| < \/E> ,

(The latter is true for any square integrable F, not just for our particular one.)

= ()2 (5))

aw(F;N) = o sup
pelip(1)

Il
g
~
Q_\_"‘l
al=z
~——
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Let M ~ N(0, 1) then it has already been proven that

dw(F; M) < sup <|E¢’(F) —EFg(F)|: ¢ € C'(R), || < \E) ,

(The latter is true for any square integrable F, not just for our particular one.)

dw(F; N)

IN

o sup

2o (5) -2 ()
peLip(1) g 4
J(F\ . F (F L2
osup (‘Ew (5)-8e(5)]occmi v \/;>
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Let M ~ N(0, 1) then it has already been proven that

dw(F; M) < sup <|E¢’(F) —EFg(F)|: ¢ € C'(R), || < \E) ,

(The latter is true for any square integrable F, not just for our particular one.)

dw(F; N)

IN

IN

o 2)-5(2)

o sup
pelip(1)
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Let M ~ N(0, 1) then it has already been proven that

dw(F; M) < sup <|E¢’(F) —EFg(F)|: ¢ € C'(R), || < \/E> ,

(The latter is true for any square integrable F, not just for our particular one.)

dw(F; N)

IN

IN

o sup
pelip(1)

o 2)-5(2)

V2 po? _ (DF.—DA~'Fy|

O/ T
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Remark

Let F € ©(D) be centered, introduce o := Var(F) # 0 and N ~ N(0, ?).
Moreover, assume that F has a density.

Then we have

drv(F; N) < %Ebz — (DF,—DA™"F)4|.

This is proven absolutely analogously to the previous theorem.
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Central Limit Theorem
Let (Fm)men C ©(D) be a sequence of centered, non constant random
variables, introduce o2, := Var(Fp) and let o2 € (0, c0).
Moreover, assume that
lim (DFm, —DA™"'F)y = o°
m—oo
in L'(Q).
Then we have
im £ — N0, 1)

m—oo Om

in law.
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Proof
Firstly, we have

lim o = lim Var(Fp) = lim E(DFpn,—DA™'Fp)y = o°.
m—oo m— oo

m— oo



Page 43 Malliavin meets CLT | | July 2016

Proof

Firstly, we have
lim o% = lim Var(Fy) = lim E(DFm, —DA™'Fp)y = o°.
m— oo m— oo m— oo

Now let N be standard Gaussian. Then we have

lim dw(?;N)

m— oo
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Proof

Firstly, we have

lim 0% = lim Var(Fm) = lim E(DFpn, ~DA™ "' Fp)y = 0.
m—oo m— oo

m— oo

Now let N be standard Gaussian. Then we have

im de(E™N) < lim QEn—iz(BFm,—BA-‘FmM
m— oo Om m— oo T Om
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Proof
Firstly, we have

lim o5 = lim Var(Fp) = lim E(DFp,~DA~ Py = 0.

m— oo

Now let N be standard Gaussian. Then we have

V2 I
lim dw(— N) < lim TE“ _OT<DFm7_DA 1Fm>H|

m— oo m— oo
im L Y2R102 o2 02 (DFn DA~ Ful

m— oo 0-2 \f
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Proof
Firstly, we have

lim o5 = lim Var(Fp) = lim E(DFp,~DA~ Py = 0.

m— oo

Now let N be standard Gaussian. Then we have

V2 Be B
mlgnoodw(f N) < J@WTEH—%(DFW—DA Fm)Hl
12 — -
— nli‘lo??T]E“’"’ 0%+ 0% — (DFm, —DA™ " Fo) |

1 V2 12 — —
m'i“oogﬁ“’ |+—TIE| — (DFm,—DA™"Fr)ul

IN
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Proof
Firstly, we have

lim o5 = lim Var(Fp) = lim E(DFp,~DA~ Py = 0.

m— oo

Now let N be standard Gaussian. Then we have

lim dw(— N) < lim £E|1 — L DFm. DA Fu
m— oo m— oo o'm
1 V2 — _—
= nli‘lo??T]E“’"’ 0% 4 0® — (DFm, — DA™ Fr) 4|
. 1V2 12 A AA-T
< J@mgﬁb |+7TE| — (DFm, =DA™ Fm)H|

0.
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Remark

1. We just proved a CLT without directly stating any independence
assumptions.
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Remark
1. We just proved a CLT without directly stating any independence
assumptions.
2. How does one verify that lim (DFpn, —DA~"Fpn)y = ¢? How does one
even choose the Hilbert sSZé)é?
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Definitions
1. ~ denotes the standard Gaussian measure and W, the hermite
polynomials.
2. f € L3R, B(R), ) is a fixed non-constant function such that [ fdy = 0.
R

3. (an)nen is such that f = 3~ a,W,, where the latter convergence is
n=1

understood in L3(R, B(R), ).

4. The Hermite rank of f is defined by
dr:=inf{neNjai=..=a,-1=0, an#0} <

5. (Xk)kez denote a centered, stationary, Gaussian sequence, such that
Var(Xx) = 1 for one (and therefore every) k € N

6. C(k) = EXKXO

m
7 V= 2 X0



Page 52 Malliavin meets CLT | | July 2016

Remark

1. (f(Xk))kez is also a stationary sequence. Particularly, it consists of
identically random variables.

2. Ef(X) = [ fdy =0.
R
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Remark
1. (f(Xk))kez is also a stationary sequence. Particularly, it consists of
identically random variables.
2. Ef(Xk) = [fdy =0.
R

Remark
One can show that there is a separable Hilbert space H, an isonormal
Gaussian process X and a sequence (ex)xez such that

1. The closure of the linear span of (ex)xez is H.
2. (ex,e)n = C(k—j)forall k,j € Z.
3. Xk = X(ex) for all k € Z.
Then one proves, using Malliavin Calculus, the following CLT:
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CLT for Functionals of stationary Gaussian Sequences
Assume that 3 |C(k)|% < co. Then we have
KEZ

lim V=N,

m—oo

in law, where N is a centered Gaussian random variable, with

Var(N) = Z;laj > C(kY € (0,00)

j=df KEZ
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CLT for the Increments of Fractional Brownian Motion
Let (Bt)icr be a fractional Brownian motion with Hurst index H € (0,1 — %7 ,
where g € N, with g # 1. Moreover, introduce

X = Bk—Bk_1, k € Z.

and

1 m
Vi = 7 ; W (Xk).

Then we have

lim Vam =N,

m—oo
in law, where N is a centered Gaussian random variable, with
Var(N) = =S (1k + 12 4 [k — 12 — 2]k[2)0.

!
29
kezZ
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Proof
1. By definition we have EB; = 0 and E(B;Bs) = 3(|t|*" + [s|?" — |t — s*").
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Proof
1. By definition we have EB; = 0 and E(B;Bs) = 3(|t|*" + [s|?" — |t — s*").
2. Introduce C(v) := E(Xx Xk, ) for all v € Z and an arbitrary k € Z



Page 58 Malliavin meets CLT | | July 2016

Proof

1. By definition we have EB; = 0 and E(B;Bs) = 3(|t|*" + [s|?" — |t — s*").
2. Introduce C(v) := E(XkXk1, ) for all v € Z and an arbitrary k € Z.

3. A trivial calculation yields

Clv) = (I — 1P+ | +12 — 2]

Consequently, (Xk)«kez is a centered, stationary and has unit variance.
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Proof

1. By definition we have EB; = 0 and E(B;Bs) = 3(|t|*" + [s|?" — |t — s*").
2. Introduce C(v) := E(XkXk1, ) for all v € Z and an arbitrary k € Z.

3. A trivial calculation yields

Clv) = (I — 1P+ | +12 — 2]

Consequently, (Xk)«kez is a centered, stationary and has unit variance.
4. We already know that [ Wyd~ = 0.
R
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Proof

1. By definition we have EB; = 0 and E(B;Bs) = 3(|t|*" + [s|?" — |t — s*").
2. Introduce C(v) := E(XkXk1, ) for all v € Z and an arbitrary k € Z.

3. A trivial calculation yields

Clv) = (I — 1P+ | +12 — 2]

Consequently, (Xk)«kez is a centered, stationary and has unit variance.
4. We already know that [ Wyd~ = 0.

R
5. Trivially a, =0ifn# ganda,=1ifn=gq.
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Proof

1. By definition we have EB; = 0 and E(B;Bs) = 3(|t|*" + [s|?" — |t — s*").
2. Introduce C(v) := E(XkXk1, ) for all v € Z and an arbitrary k € Z.

3. A trivial calculation yields

1

Cv) = 5(v—1 P 127 = 2P
Consequently, (Xk)«kez is a centered, stationary and has unit variance.
4. We already know that [ Wyd~ = 0.

R
5. Trivially a, =0ifn# ganda, =1ifn=q.
6. Moreover, one verifies

C(v) = H2H — D|v*"2 + o(|v[?"7?), as v — o0
Finally, the latter implies that > |C(v)|? < oo which yields the claimed

veEL
convergence result
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Proof

1. By definition we have EB; = 0 and E(B;Bs) = 3(|t|*" + [s|?" — |t — s*").
2. Introduce C(v) := E(XkXk1, ) for all v € Z and an arbitrary k € Z.

3. A trivial calculation yields

Clv) = (I — 1P+ | +12 — 2]

Consequently, (Xk)«kez is a centered, stationary and has unit variance.
4. We already know that [ Wyd~ = 0.

R
5. Trivially a, =0ifn# ganda, =1ifn=q.
6. Moreover, one verifies

C(v) = H2H — )[v|?" 2 + o(|v[?"?), as v — o0

Finally, the latter implies that > |C(v)|? < oo which yields the claimed
vEL
convergence result.

7. The expression for the variance is trivial as a, =0if n # qand a, = 1 if
n=aq.



