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Exercise 2-1 (3 points)

Let real r.v. X be Lévy distributed (see Exercise Sheet 1, Ex. 1-4). Find the characteristic
function of X. Give parameters (a, o, 3, u) for the stable random variable X.
Hint: You may use the following formulas. !
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Exercise 2-2 (5 points)
Let Y be a Cauchy distributed r.v. (see Exercise Sheet 1, Ex. 1-5.)
1. (2 points) Show that Y g otan(U) + p where ¢ > 0, € R, and U is a uniformly
distributed on [—g, %] .
2. (4 points) Find the characteristic function of Y. Give parameters («, o, 3, i) for the stable

random variable Y.
Hint: Use Cauchy’s residue theorem.

Exercise 2-3 (2 points)
Let X ~ Si(o, 8, ) and a > 0. Is aX stable? If so, define new («w, o9, B2, p2) of aX.

Exercise 2-4 (3 points)

Let X ~ N(0,02) and A be a positive a—stable r.v. Is the new r.v. AX stable, strictly stable?
If so, find its stability index ao.

Exercise 2-5 (4 points)

Let L be a positive slowly varying function, i.e., Vz > 0
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1. (2 points) Prove that z7¢ < L(z) < 2 for any fixed € > 0 and all = sufficiently large.

2. (2 points) Prove that limit (1) is uniform in finite intervals 0 < a < x < b.

Hint: Use a representation theorem:?

A function Z varies slowly iff it is of the form Z(z) = a(x)exp (fl‘r #dy) , where e(z) — 0

and a(x) — ¢ < 00 as & — 00.
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