Stable Distributions SoSe 2016 April 21, 2016 Universität Ulm Prof. Dr. Evgeny Spodarev Dr. Vitalii Makogin

Exercise sheet 2 (total -17 points) till May 3, 2016

Exercise 2-1 (3 points)

Let real r.v. X be Lévy distributed (see Exercise Sheet 1, Ex. 1-4). Find the characteristic function of X. Give parameters $(\alpha, \sigma, \beta, \mu)$ for the stable random variable X.

Hint: You may use the following formulas.¹

$$\int_0^\infty \frac{e^{-1/(2x)}}{x^{3/2}} \cos(yx) dx = \sqrt{2\pi} e^{-\sqrt{|y|}} \cos(\sqrt{|y|}), y \in \mathbb{R},$$
$$\int_0^\infty \frac{e^{-1/(2x)}}{x^{3/2}} \sin(yx) dx = \sqrt{2\pi} e^{-\sqrt{|y|}} \sin(\sqrt{|y|}) \operatorname{sign} y, y \in \mathbb{R}.$$

Exercise 2-2 (5 points)

Let Y be a Cauchy distributed r.v. (see Exercise Sheet 1, Ex. 1-5.)

- 1. (2 points) Show that $Y \stackrel{d}{=} \sigma \tan(U) + \mu$ where $\sigma > 0, \mu \in \mathbb{R}$, and U is a uniformly distributed on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- (4 points) Find the characteristic function of Y. Give parameters (α, σ, β, μ) for the stable random variable Y. Hint: Use Cauchy's residue theorem.

Exercise 2-3 (2 points)

Let $X \sim S_1(\sigma, \beta, \mu)$ and a > 0. Is aX stable? If so, define new $(\alpha_2, \sigma_2, \beta_2, \mu_2)$ of aX.

Exercise 2-4 (3 points)

Let $X \sim N(0, \sigma^2)$ and A be a positive α -stable r.v. Is the new r.v. AX stable, strictly stable? If so, find its stability index α_2 .

Exercise 2-5 (4 points)

Let L be a positive slowly varying function, i.e., $\forall x > 0$

$$\lim_{t \to +\infty} \frac{L(tx)}{L(t)} = 1.$$
(1)

- 1. (2 points) Prove that $x^{-\varepsilon} \leq L(x) \leq x^{\varepsilon}$ for any fixed $\varepsilon > 0$ and all x sufficiently large.
- 2. (2 points) Prove that limit (1) is uniform in finite intervals 0 < a < x < b.

Hint: Use a representation theorem:²

A function Z varies slowly iff it is of the form $Z(x) = a(x) \exp\left(\int_1^x \frac{\varepsilon(y)}{y} dy\right)$, where $\varepsilon(x) \to 0$ and $a(x) \to c < \infty$ as $x \to \infty$.

¹Oberhettinger, F. (1973). Fourier transforms of distributions and their inverses: a collection of tables. Academic press, p.25

²Feller, W. (1973). An Introduction to Probability Theory and its Applications. Vol 2, p.282