Stable Distributions SoSe 2016 May 20, 2016 Universität Ulm Prof. Dr. Evgeny Spodarev Dr. Vitalii Makogin

Exercise sheet 4 (total -14 points) till June 2, 2016

Exercise 4-1 (2 points)

Show that the sum of two independent stable random variables with different α -s is not stable.

Exercise 4-2 (2 points)

Let $X \sim S_{\alpha}(\lambda, \beta, \gamma)$. Using the weak law of large numbers prove that when $\alpha \in (1, 2]$, the shift parameter $\mu = \lambda \gamma$ equals **E**X.

Exercise 4-3 (2 points)

Let X be a standard Lévy distributed random variable. Compute its Laplace transform

$$\mathbf{E}\exp(-\gamma X), \gamma > 0.$$

Exercise 4-4 (3 points)

Let $X \sim S_{\alpha'}(\lambda', 1, 0)$, and $A \sim S_{\alpha/\alpha'}(\lambda_A, 1, 0)$, $0 < \alpha < \alpha' < 1$ be independent. The value of λ_A is chosen s.t. the Laplace transform of A is given by $\mathbf{E} \exp(-\gamma A) = \exp(-\gamma^{\alpha/\alpha'}), \gamma > 0$. Show that $Z = A^{1/\alpha'}X$ has a $S_{\alpha}(\lambda, 1, 0)$ distribution for some $\lambda > 0$.

Exercise 4-5 (5 points)

Let $X \sim S_{\alpha}(\lambda, 1, 0), \alpha < 1$ and the Laplace transform of X be given by $\mathbf{E} \exp(-\gamma X) = \exp(-c_{\alpha}\gamma^{\alpha}), \gamma > 0$, where $c_{\alpha} = \lambda^{\alpha}/\cos(\pi\alpha/2)$.

1. (3 points) Show that

$$\lim_{x \to \infty} x^{\alpha} \mathbf{P}\{X > x\} = C_{\alpha},$$

where C_{α} is a positive constant. Hint: Use the Tauberian theorem.¹

2. (2 points) Prove that

$$\mathbf{E}|X|^p < \infty$$
, for any $0 , $\mathbf{E}|X|^p = \infty$, for any $p \ge \alpha$.$

$$U(t) \sim \frac{1}{\Gamma(\rho+1)} t^{\rho} L(t), t \to \infty, \qquad \int_0^\infty e^{-\tau x} dU(x) \sim \frac{1}{\tau^{\rho}} L\left(\frac{1}{\tau}\right), \tau \to 0.$$

¹(Feller 1971 Theorem XIII.5.4.) If L is slowly varying at infinity and $\rho \in \mathbb{R}_+$, the following relations are equivalent