Stable Distributions

SoSe 2016

June 9, 2016

Universität Ulm

Prof. Dr. Evgeny Spodarev Dr. Vitalii Makogin

Exercise sheet 5 (total -14 points)

till June 16, 2016

Exercise 5-1 (1 point)

Let X_1, X_2 be two independent α -stable random variables with parameters (λ, β, γ) . Prove that $X_1 - X_2$ is a stable random variable and find its parameters $(\alpha_1, \lambda_1, \beta_1, \gamma_1)$.

Exercise 5-2 (3 points)

Let X_1, \ldots, X_n be i.i.d $S_{\alpha}(\lambda, \beta, \gamma)$ distributed random variables and $S_n = X_1 + \cdots + X_n$. Prove that the limiting distribution of

- 1. (1 point) $n^{-1/\alpha}S_n, n \to \infty$, if $\alpha \in (0, 1)$;
- 2. (1 point) $n^{-1}(S_n 2\pi^{-1}\lambda\beta n \log n) \lambda\gamma, n \to \infty$, if $\alpha = 1$;
- 3. (1 point) $n^{-1/\alpha}(S_n n\lambda\gamma), n \to \infty$, if $\alpha \in (1, 2]$;

is $S_{\alpha}(\lambda, \beta, 0)$.

Exercise 5-3 (4 points)

Let $X_1, X_2...$, be a sequence of i.i.d. random variables and let p > 0. Applying the Borel-Cantelli lemmas, show that

- 1. (2 points) $\mathbf{E}|X_1|^p < \infty$ if and only if $\lim_{n\to\infty} n^{-1/p} X_n = 0$ a.s.,
- 2. (2 points) $\mathbf{E}|X_1|^p = \infty$ if and only if $\limsup_{n\to\infty} n^{-1/p}X_n = \infty$ a.s.

Exercise 5-4 (3 points)

Let ξ be a non-negative random variable with the Laplace transform $\mathbf{E} \exp(-\lambda \xi) = \exp(-\lambda^{\alpha}), \lambda \geq 0$. Prove that

$$\mathbf{E}\xi^{\alpha s} = \frac{\Gamma(1-s)}{\Gamma(1-\alpha s)}, s \in (0,1).$$

Exercise 5-5 (3 points)

Denote by

$$\tilde{f}(s) := \int_0^\infty e^{-sx} f(x) dx,$$

the Laplace transform of a real function f defined for all s > 0, whenever \tilde{f} is finite. For the following functions find the Laplace transforms (in terms of \tilde{f}):

- 1. For $a \in \mathbb{R}$ $f_1(x) := f(x a), x \in \mathbb{R}_+$, and f(x) = 0, x < 0.
- 2. For b > 0 $f_2(x) := f(bx), x \in \mathbb{R}_+$.
- 3. $f_3(x) := f'(x), x \in \mathbb{R}_+$.
- 4. $f_4(x) := \int_0^x f(u) du, x \in \mathbb{R}_+.$