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Exercise 7-1 (3 points)

Prove the following statement which is used in the proof of Proposition 2.3 in the Lecture
notes.

Let X ∼ Sα(λ, β, 0) with α ∈ (0, 2). Then there exist two i.i.d. r.v.’s Y1 and Y2 with
common distribution Sα(λ, 1, 0) s.t.
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Exercise 7-2 (3 points)

Prove that for α ∈ (0, 1) and fixed λ, the family of distributions Sα(λ, β, 0) is stochastically
ordered in β, i.e., if Xβ ∼ Sα(λ, β, 0) and β1 ≤ β2 then P(Xβ1 ≥ x) ≤ P(Xβ2 ≥ x) for
x ∈ R.

Exercise 7-3 (3 points)

Prove Exercise 2.9 in the Lecture Notes: Show that if n
b2n
µ(bnx) ∼ Cx−α, n → ∞, where
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as n→∞.

Exercise 7-4 (5 points)

Prove the following theorem.

Theorem 1. A distribution function F is in the domain of attraction of a stable law with
exponent α ∈ (0, 2) if and only if there are constants C+, C− ≥ 0, C+ +C− > 0, such that
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