

Stochastische Geometrie

Institut für Stochastik

Vorlesungsskript Dr. Jürgen Kampf

Sommersemester 2016 Stand: 14. Juli 2016

Literaturverzeichnis

- [1] S. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic Geometry and Its Applications. Wiley, 2013.
- [2] K. Mecke and D. Stoyan. Morphology of Condensed Matter. Springer, 2002.
- $[3]\,$ I. Molchanov. Theory of Random Sets. Springer, 2005.
- [4] R. Schneider and W. Weil. Stochastic and Integral Geometry. Springer, 2008.
- [5] E. Spodarev. Stochastic Geometry, Spatial Statistics and Random Fields. Springer, 2013.

Inhaltsverzeichnis

1	Random variables in the space of closed sets	1
	1.1 Definition of random closed sets and the capacity functional	 1
	1.2 The metric space of closed sets	 2
	1.3 Stationäre zufällige abgeschlossene Mengen	 7
2	Keim-Korn-Modelle	11
	2.1 Einfache markierte Punktprozesse	 11
	2.2 Keim-Korn-Modelle	
	2.3 Das Boolesche Modell	 16
3	Mittelwerte für zufällige abgeschlossene Mengen	19
	3.1 Mittelwerte für das Boolesche Modell	 19

Kapitel 1

Random variables in the space of closed sets

1.1 Definition of random closed sets and the capacity functional

Throughout this section we assume that the state space E is

- $E = \mathbb{R}^d$
- E is separable locally compact metric space
- \bullet E is a locally compact Hausdorff space with countable base

Definition 1.1. Let (M, d) be a metric space.

- (i) A set $A \subseteq M$ is said to be dense in M, if the closure of A equals M.
- (ii) The space (M,d) is called separable, if there is a countable, dense subset $A \subseteq M$.

Example: \mathbb{Q}^d is dense in \mathbb{R}^d . Since \mathbb{Q}^d is countable, \mathbb{R}^d is separable.

Definition 1.2. A metric space (M,d) is called locally compact if for every $x \in M$ there is $\epsilon > 0$ such that $\{y \in M \mid d(x,y) \leq \epsilon\}$ is compact.

Example: A normed space $(M, ||\cdot||)$ is locally compact if and only if it is finite dimensional.

We denote the set of closed subsets resp. compact subsets of E by \mathcal{F} resp. \mathcal{C} . The set of open sets will be denoted by \mathcal{G} . Moreover, we put

$$\mathcal{F}^A := \{ F \in \mathcal{F} \mid F \cap A = \emptyset \}, \ A \subseteq E$$
$$\mathcal{F}_A := \{ F \in \mathcal{F} \mid F \cap A \neq \emptyset \}$$

Definition 1.3. The Matheron- σ -algebra is the σ -algebra generated by the sets of the form \mathcal{F}^C , $C \in \mathcal{C}$. A function from a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ into \mathcal{F} is called random closed set, if it is measurable w.r.t. the Matheron- σ -algebra.

Recall that the distribution of a random closed set Z is the probability measure on the Matheron- σ -algebra defined by $\mathbb{P}_Z(A) := \mathbb{P}(Z \in A)$. If two random closed sets Z and Z' have the same distribution, $\mathbb{P}_Z = \mathbb{P}_{Z'}$, we write $Z \stackrel{d}{=} Z'$.

Definition 1.4. Let Z be a random closed set in E. Then $T_Z : \mathcal{C} \to [0,1]$, $C \mapsto \mathbb{P}(Z \cap C \neq \emptyset) = 1 - \mathbb{P}_Z(\mathcal{F}^C)$ is called capacity functional or Choquet functional of Z.

Lemma 1.5. Let (Ω, \mathcal{A}) be a some measurable space and let \mathcal{B} be some intersection-stable generating system of \mathcal{A} , i.e. for $B_1, B_2 \in \mathcal{B}$ we have $B_1 \cap B_2 \in \mathcal{B}$ and $\sigma(\mathcal{B}) = \mathcal{A}$. If two measures μ and ν on \mathcal{A} coincide on \mathcal{B} , i.e. $\mu(\mathcal{B}) = \nu(\mathcal{B})$ for every $\mathcal{B} \in \mathcal{B}$ and there is a sequence $(B_i)_{i \in \mathbb{N}}$ with $\mu(B_i) < \infty$, $B_i \subseteq B_{i+1}$, $i \in \mathbb{N}$ such that $\bigcup_{i=1}^{\infty} B_i = \Omega$, then they coincide on \mathcal{A} .

Theorem 1.6. Let Z and Z' be two random closed sets in E. We have $Z \stackrel{d}{=} Z'$ if and only if $T_Z = T_{Z'}$.

Proof: Assume $T_Z = T_{Z'}$. Then $\mathbb{P}_Z(\mathcal{F}^C) = \mathbb{P}_{Z'}(\mathcal{F}^C)$ for all $C \in \mathcal{C}$. The system $\{\mathcal{F}^C \mid C \in \mathcal{C}\}$ generates the Matheron- σ -algebra and it is intersection stable, since for $C_1, C_2 \in \mathcal{C}$ we have

$$\mathcal{F}^{C_1} \cap \mathcal{F}^{C_2} = \{ F \in \mathcal{F} \mid F \cap C_1 = \emptyset \text{ and } F \cap C_2 = \emptyset \} = \mathcal{F}^{C_1 \cup C_2}$$

Hence the lemma implies $\mathbb{P}_Z = \mathbb{P}_{Z'}$ on the whole Matheron- σ -algebra.

For a function $T: \mathcal{C} \to \mathbb{R}$ we define

$$S_0^T(C) := 1 - T(C), \qquad C \in \mathcal{C}$$

$$S_k^T(C_0; C_1, \dots, C_k) := S_{k-1}^T(C_0; C_1, \dots, C_{k-1}) - S_{k-1}^T(C_0 \cup C_k; C_1, \dots, C_{k-1}), \quad C_0, \dots, C_k \in \mathcal{C}, k \in \mathbb{N}. \quad \Box$$

Theorem 1.7. Let $T: \mathcal{C} \to \mathbb{R}$ be a function. There is a random closed set Z with capacity functional T if and only if

- (a) $T(\emptyset) = 0$, $T(C) \in [0,1]$ for all $C \in \mathcal{C}$
- (b) For any sequence $(C_i)_{i\in\mathbb{N}}$ in C with $C_{i+1}\subseteq C_i$ for all $i\in\mathbb{N}$ we have $\lim_{i\to\infty}T(C_i)=T(C)$, where $C:=\bigcap_{i=1}^\infty C_i$
- (c) $S_k(C_0; C_1, ..., C_k) \ge 0$ for $C_0, C_1, ..., C_k \in C$ and $k \in \mathbb{N}$.

Proof: We only show the easy direction.

- (a) trivial
- (b) For all $i \in \mathbb{N}$ we get $\mathcal{F}_{C_{i+1}} \subseteq \mathcal{F}_{C_i}$ from $C_{i+1} \subseteq C_i$. Therefore $\mathcal{F}_C \subseteq \bigcap_{i=1}^{\infty} \mathcal{F}_{C_i}$. In order to show that equality holds, let $F \in \bigcap_{i=1}^{\infty} \mathcal{F}_{C_i}$. Then $F \cap C_i \neq \emptyset$ for all $i \in \mathbb{N}$. By the intersection property of compact sets (Exercise!) $F \cap \bigcap_{i=1}^{\infty} C_i = \bigcap_{i=1}^{\infty} (F \cap C_i) \neq \emptyset$. Now

$$\lim_{i \to \infty} T(C_i) = \lim_{i \to \infty} \mathbb{P}_Z(\mathcal{F}_{C_i}) = \mathbb{P}_Z(\bigcap_{i=1}^{\infty} \mathcal{F}_{C_i}) = \mathbb{P}_Z(\mathcal{F}_C) = T(C).$$

(c) We will show more precisely

$$S_k^T(C_0; C_1, \dots, C_k) = \mathbb{P}_Z(\mathcal{F}^{C_0} \cap \mathcal{F}_{C_1} \cap \dots \cap \mathcal{F}_{C_k})$$

for all $C_0, C_1, \ldots, C_k \in \mathcal{C}, k \in \mathbb{N}$ by induction.

$$k = 0: S_0^T(C_0) = 1 - T_Z(C_0) = \mathbb{P}_Z(\mathcal{F}^{C_0})$$

 $k-1 \rightarrow k$:

$$S_{k}^{T}(C_{0}; C_{1}, \dots, C_{k}) = S_{k-1}^{T}(C_{0}; C_{1}, \dots, C_{k-1}) - S_{k-1}^{T}(C_{0} \cup C_{k}; C_{1}, \dots, C_{k-1})$$

$$= \mathbb{P}_{Z}(\mathcal{F}^{C_{0}} \cap \mathcal{F}_{C_{1}} \cap \dots \cap \mathcal{F}_{C_{k-1}}) - \mathbb{P}_{Z}(\mathcal{F}^{C_{0}} \cap \mathcal{F}^{C_{k}} \cap \mathcal{F}_{C_{1}} \cap \dots \cap \mathcal{F}_{C_{k-1}})$$

$$= \mathbb{P}_{Z}(\mathcal{F}^{C_{0}} \cap \mathcal{F}_{C_{1}} \cap \dots \cap \mathcal{F}_{C_{k-1}} \cap \mathcal{F}_{C_{k}})$$

1.2 The metric space of closed sets

Definition 1.8. A metric of closed convergence on \mathcal{F} is a metric whose open sets are the sets

$$\bigcup_{i \in I} \mathcal{F}^{C_i} \cup \bigcup_{i \in J} \mathcal{F}_{G_i}$$

where I, J are empty, finite, countable finite or uncountable index sets and $C_i \in \mathcal{C}$ for all $i \in I$ and $G_i \in \mathcal{G}$ for all $i \in I$.

Remark: It can be shown, using the Urysohn theorem, that such a metric really exists.

Theorem 1.9. Let $(F_i)_{i\in\mathbb{N}}$ be a sequence in \mathcal{F} and let $F\in\mathcal{F}$. Then the following are equivalent:

- (a) $\lim_{i \to \infty} F_i = F$ in one metric of closed convergence.
- (b) $\lim_{i \to \infty} F_i = F$ in every metric of closed convergence.
- (c) Both (c_1) and (c_2) hold.
 - (c_1) If $G \in \mathcal{G}$ and $F \cap G \neq \emptyset$, then $F_i \cap G \neq \emptyset$ for almost all j.
 - (c_2) If $C \in \mathcal{C}$ and $F \cap C = \emptyset$, then $F_j \cap C = \emptyset$ for almost all j.
- (d) Both (d_1) and (d_2) hold.
 - (d₁) If $x \in F$, then there is a sequence $(x_j)_{j \in \mathbb{N}}$ with $\lim_{j \to \infty} x_j = x$ and $x_j \in F_j$ for almost all j.
 - (d₂) For any subsequence $(F_{j_k})_{k\in\mathbb{N}}$ of $(F_j)_{j\in\mathbb{N}}$ and any convergent sequence $(x_k)_{k\in\mathbb{N}}$ with $x_k\in F_{j_k}$ we have $\lim_{k\to\infty}x_k\in F$.

Proof: Recall that a sequence $(Z_j)_{j\in\mathbb{N}}$ in a metric space (M,d) convergences to $Z\in M$ if and only if for every sets open set $U\subseteq M$ with $Z\in U$ we have $Z_j\in U$ for almost all $j\in\mathbb{N}$.

- $(a) \Rightarrow (c)$ For $G \in \mathcal{G}$ and $C \in \mathcal{C}$ the sets \mathcal{F}^C and \mathcal{F}_G are open. Hence $F \in \mathcal{F}^C$ resp. $F \in \mathcal{F}_G$ implies $F_j \in \mathcal{F}^C$ resp. $F_j \in \mathcal{F}_G$ for almost all j.
- $(c) \Rightarrow (b)$ Consider an open set

$$U = \bigcup_{i \in I} \mathcal{F}^{C_i} \cup \bigcup_{i \in J} \mathcal{F}_{G_i},$$

 $C \in \mathcal{C}$, $G_i \in \mathcal{G}$ with $F \in U$. We have to show $F_j \in U$ for almost all j. According to (c) for each fixed $i \in I$ we have $F_j \in \mathcal{F}^{C_i}$ for almost all j and for each fixed $i \in J$ we have $F_j \in \mathcal{F}_{G_i}$. Since $F \in U$, we cannot have $I = J = \emptyset$. So, of course, $F_j \in U$ for all sufficiently large j.

 $(c_1) \Rightarrow (d_1)$ Let $x \in F$. Let

$$G_n := B_{1/n}(x) = \{ y \in E \mid d(x, y) < \frac{1}{n} \}.$$

By (c_1) (since $F \cap G_n \neq \emptyset$) there is j_n with $F_j \cap G_n \neq \emptyset$ for $j > j_n$. Put $J_n := \max\{j_1, \ldots, j_n\}$. Then for all $j > j_1$ choose $x_j \in F_j \cap G_n$ for the number n with $J_n < j \le J_{n+1}$. Then $d(x_j, x) < \frac{1}{n}$. Since n exceeds all bounds as $j \to \infty$, we have $\lim_{j \to \infty} x_j = x$.

- $(c_2) \Rightarrow (d_2)$ Let $(F_{j_k})_{k \in \mathbb{N}}$ be a subsequence and $x_k \in F_{j_k}$ for all $k \in \mathbb{N}$ with $\lim_{k \to \infty} x_k =: x$. Assume $x \notin F$. Then $\epsilon := \inf\{d(x,y)|y \in F\} > 0$ (Exercise!) and hence there is a compact set C with $x \in \operatorname{int} C$ and $C \cap F = \emptyset$. By (c_2) $C \cap F_j = \emptyset$ for almost all j and in particular $x_k \notin C$ for almost all k, contradicting $\lim_{k \to \infty} x_k = x$.
- $(d_1) \Rightarrow (c_1)$ Let $G \in \mathcal{G}$ with $F \cap G \neq \emptyset$. Then there exists $x \in F \cap G$. By (d_1) there is a sequence $(x_j)_{j \in \mathbb{N}}$ with $x_j \in F_j$ for almost all j and $\lim_{j \to \infty} x_j = x$. In particular, $x_j \in G$ for almost all j, so $x_j \in F_j \cap G$ for almost all j and thus $F_j \cap G \neq \emptyset$.
- $(d_2) \Rightarrow (c_2)$ Let $C \in \mathcal{C}$ and $C \cap F = \emptyset$. Assume $C \cap F_j = \emptyset$ for only finitely many j. Then there is a subsequence $(F_{j_k})_{k \in \mathbb{N}}$ and points $(x_k)_{k \in \mathbb{N}}$ with $x_k \in C \cap F_{j_k}$. Choosing a further subsequence, we may assume that $(x_k)_{k \in \mathbb{N}}$ converges to a point $x \in C$. Now (d_2) implies $x \in F$, a contradiction, since $x \in C$ and $C \cap F = \emptyset$. So $C \cap F_j = \emptyset$ for almost all j.

Example: 1) Let $F_j = \left[0, 1 - \frac{1}{j}\right]$, $j \in \mathbb{N}$. Then $\lim_{j \to \infty} F_j = [0, 1]$. Indeed, for every subsequence $(F_{j_k})_{k \in \mathbb{N}}$ of $(F_j)_{j \in \mathbb{N}}$ and every sequence $(x_k)_{k \in \mathbb{N}}$ with $x_k \in F_{j_k}$ for all $k \in \mathbb{N}$, we have $\lim_{k \to \infty} x_k \in [0, 1]$, if the limit exists, since [0, 1] in closed in \mathbb{R} . On the other hand, let $x \in [0, 1]$.

1. Case: x < 1.

Then put $x_j := x$ for almost all j, more precisely for all $j \ge \frac{1}{1-x}$. Then $x_j \in \left[0, 1 - \frac{1}{j}\right]$ for these j and $\lim_{j \to \infty} x_j = x$.

2. Case: x = 1.

Put $x_j := 1 - \frac{1}{j}$ for all $j \in \mathbb{N}$. Then $x_j \in F_j$ for all j and $\lim_{j \to \infty} x_j = 1$.

2) Let $(y_i)_{i\in\mathbb{N}}$ be a sequence in \mathbb{R} with $\lim_{j\to\infty}y_j=\infty$. Then $\lim_{j\to\infty}\{y_j\}=\varnothing$ in the metric of closed convergence. Indeed, let $(x_k)_{k\in\mathbb{N}}$ be a sequence with $x_k\in\{y_{j_k}\}$ for a subsequence $(y_{j_k})_{k\in\mathbb{N}}$. Then $x_k=y_{j_k}$ and hence $\lim_{k\to\infty}x_k=\infty$, so $(x_k)_{k\in\mathbb{N}}$ cannot have a limit. By the elementary rules of logic all conditions are fulfilled now.

Theorem 1.10. The Borel- σ -algebra of the metric of closed convergence, i.e. the σ -algebra generated by the system of all open sets, is the Matheron- σ -algebra.

Proof:

"⊇" trivial, since the Matheron- σ -algebra is generated by the sets of the form \mathcal{F}^C , $C \in \mathcal{C}$, and these sets are open w.r.t. the metric of closed convergence. "⊆" skipped.

Theorem 1.11. (i) The metric space \mathcal{F} is compact.

- (ii) The metric space $\mathcal{F}' := \mathcal{F} \setminus \{\emptyset\}$ is locally compact.
- (iii) Let $D \subseteq E$ be a countable dense subset. Then the system \mathcal{D} of all finite resp. not empty finite subsets of D is dense in \mathcal{F} resp. in \mathcal{F} .
- (iv) The metric spaces $\mathcal{F}^{'}$ and \mathcal{F} are separable.

For the proof of part (iii), we need the following lemma:

Lemma 1.12. Let E be a locally compact, separable metric space. Then there is a sequence $(C_i)_{i\in\mathbb{N}}$ of compact sets with $C_i\subseteq C_{i+1}$ for all $i\in\mathbb{N}$ and $\bigcup_{i\in\mathbb{N}}C_i=E$.

Proof: skipped.

Proof of Theorem 1.11: (i) We will show that every open cover $\{U_k \mid k \in K\}$ of \mathcal{F} contains a finite subcover. Since every set U_k is of the form $\bigcup_{i \in I_k} \mathcal{F}^{C_{i,k}} \cup \bigcup_{i \in J_k} \mathcal{F}_{G_{i,k}}$, we have

$$\bigcup_{k \in K} \left(\bigcup_{i \in I_k} \mathcal{F}^{C_{i,k}} \cup \bigcup_{i \in J_k} \mathcal{F}_{G_{i,k}} \right) = \mathcal{F},$$

and thus

$$\bigcap_{k \in K} \bigcap_{i \in I_k} \mathcal{F}_{C_{i,k}} \cap \bigcap_{k \in K} \bigcap_{i \in J_k} \mathcal{F}^{G_{i,k}} = \emptyset.$$

Putting $G := \bigcup_{k \in K} \bigcup_{i \in J_k} G_{i,k}$, this yields

$$\bigcap_{k \in K} \bigcap_{i \in J_k} \mathcal{F}_{C_{i,k}} \cap \mathcal{F}^G = \varnothing.$$

Now $G^C \in \mathcal{F}^G$ and therefore $G^C \notin \bigcap_{k \in K} \bigcap_{i \in I_k} \mathcal{F}_{C_{i,k}}$. Hence there is $k_0 \in K, i_0 \in J_{k_0}$ with $G^C \notin \mathcal{F}_{C_{i_0,k_0}}$. Thus $C_{i_0,k_0} \subseteq \bigcup_{k \in K} \bigcup_{i \in J} G_{i,k}$. Hence there is a finite subcover $\{G_{i,k} \mid i \in \tilde{J}_k, k \in \tilde{K}\}$. Assume there is $F \in \bigcap_{k \in \tilde{K}} \bigcap_{i \in \tilde{J}_k} \mathcal{F}^{G_{i,k}} \cap \mathcal{F}_{C_{i_0,k_0}}$. This means $F \cap C_{i_0,k_0} \neq \emptyset$, but $F \cap G_{i,k} = \emptyset$, $k \in \tilde{K}, i \in \tilde{J}_k$, which is impossible. Therefore $\mathcal{F}_{C_{i_0,k_0}} \cap \bigcap_{k \in \tilde{K}} \bigcap_{i \in \tilde{J}_k} \mathcal{F}^{G_{j,k}} = \emptyset$ and thus

$$\mathcal{F}^{C_{i_0,k_0}} \cup \bigcup_{k \in \tilde{K}} \bigcup_{i \in \tilde{J}_k} \mathcal{F}_{G_{j,k}} = \mathcal{F}.$$

Hence

$$\bigcup_{k \in \tilde{K} \cup \{k_0\}} U_k = \mathcal{F}.$$

So F is compact.

- (ii) skipped.
- (iii) Let $(C_n)_{n\in\mathbb{N}}$ be a sequence of compact sets with $C_n\subseteq C_{n+1}$ and $\bigcup_{n\in\mathbb{N}}C_n=E$ (cf. Lemma 1.12). For each $n\in\mathbb{N}$ the system $\{B_{\frac{1}{n}}(x)\mid x\in D\}$ forms an open over of C_n . Hence there is a finite subcover $\{B_{\frac{1}{n}}(x)\mid x\in D_n\}$ for some finite set $D_n\subseteq D$.

Let $F \in \mathcal{F}$. We will construct a sequence $(F_i)_{i \in \mathbb{N}}$ in $\mathcal{D} \subseteq \mathcal{F}$ converging to F in the metric of closed convergence. For $\epsilon > 0$ we put

$$F_{\epsilon} := \{ y \in E \mid \text{ there is } x \in E \text{ with } d(x, y) \le \epsilon \}.$$

Now put

$$F_m := F_{\oplus \frac{1}{m}} \cap D_m.$$

Clearly, F_m is a finite subset of D and only empty, if F is empty. Let us show $\lim_{i\to\infty}F_i=F$. Let $x\in F$. Then $x\in C_i$ for all sufficiently large $i\in\mathbb{N}$, hence $d(x,y_i)<\frac{1}{i}$ for some $y_i\in D_i$. Since $y_i\in F_{\oplus\frac{1}{i}}$, we have $y_i\in F_i$. Clearly, $\lim_{i\to\infty}y_i=y$.

On the other hand, let $(F_{i_k})_{k\in\mathbb{N}}$ be a subsequence of $(F_i)_{i\in\mathbb{N}}$ and let $x_k \in F_{i_k}$ and assume that the sequence $(x_k)_{k\in\mathbb{N}}$ converges to a limit x. Then there is a sequence $y_k \in F$ with $d(x_k, y_k) \leq \frac{1}{i_k} \leq \frac{1}{k}$. Clearly, $(y_k)_{k\in\mathbb{N}}$ converges to x as well and hence $x \in F$, since F is closed.

(iv) It remains to show that the system \mathcal{D} is countable. Choose an enumeration $\{d_1, d_2, \dots\}$ of D and let \mathcal{D}_n denote the power set of $\{d_1, d_2, \dots, d_n\}$. Then \mathcal{D}_n is finite for all n and $\bigcup_{n \in \mathbb{N}} \mathcal{D}_n = \mathcal{D}$.

Definition 1.13. Let M be a metric space and $\varphi: M \to \mathcal{F}$ be a map.

- (a) The map φ is called upper semicontinuous if $\varphi^{-1}(\mathcal{F}^C)$ is open (in M) for all $C \in \mathcal{C}$.
- (b) The map φ is called lower semicontinuous if $\varphi^{-1}(\mathcal{F}_G)$ is open (in M) for all $G \in \mathcal{G}$.

Remark: A map $\varphi: M \to \mathcal{F}$ from a measurable space M is continuous if and only if it is both upper semicontinuous and lower semicontinuous.

"⇒" is clear

 $, \Leftarrow$ " Any open set U in \mathcal{F} is of the form

$$\bigcup_{i\in I} \mathcal{F}^{C_i} \cup \bigcup_{i\in J} \mathcal{F}_{G_i}$$

so

$$\varphi^{-1}(U) = \bigcup_{i \in I} \varphi^{-1}(\mathcal{F}^{C_i}) \cup \bigcup_{i \in J} \varphi^{-1}(\mathcal{F}_{G_i}).$$

If φ is both upper semicontinuous and lower semicontinuous, then all set $\varphi^{-1}(\mathcal{F}^{C_i}), \varphi^{-1}(\mathcal{F}_{G_i})$ are open sets in M. Therefore $\varphi^{-1}(U)$ is open. Hence φ is continuous.

Definition 1.14. Let $(F_i)_{i\in\mathbb{N}}$ be a sequence in \mathcal{F} .

- (a) Then the union of all accumulation points of $(F_i)_{i\in\mathbb{N}}$ is called the limes superior of $(F_i)_{i\in\mathbb{N}}$ and is denoted by $\limsup_{i\to\infty} F_i$.
- (b) The intersection of all accumulation points of $(F_i)_{i\in\mathbb{N}}$ is called the limes inferior of $(F_i)_{i\in\mathbb{N}}$ and is denoted by $\liminf_{i\to\infty} F_i$.

Theorem 1.15. Let $(F_i)_{i\in\mathbb{N}}$ be a sequence in \mathcal{F} .

- (a) $\limsup_{i \to \infty} F_i = \{ x \in E \mid \text{for all } \epsilon > 0, B_{\epsilon}(x) \cap F_i \neq \emptyset \text{ for infinitly many } i \in \mathbb{N} \}$
- (b) $\liminf_{i \to \infty} F_i = \{x \in E \mid \text{for all } \epsilon > 0, B_{\epsilon}(x) \cap F_i \neq \emptyset \text{ for almost all } i \in \mathbb{N}\}$

Both $\limsup_{i\to\infty} F_i$ and $\liminf_{i\to\infty} F_i$ are closed.

Proof: skipped.
$$\Box$$

Theorem 1.16. Let M be a separable metric space and $\varphi: M \to \mathcal{F}$ be a map.

(a) The map φ is upper semicontinuous if and only if $\limsup_{i\to\infty} \varphi(t_i) \subseteq \varphi(t)$ for any convergent sequence $(t_i)_{i\in\mathbb{N}}$ in M with limit t.

(b) The map φ is lower semicontinuous if and only if $\liminf_{i\to\infty} \varphi(t_i) \supseteq \varphi(t)$ for any convergent sequence $(t_i)_{i\in\mathbb{N}}$ in M with limit t.

Proof: skipped. \Box

Theorem 1.17. Let $(F_i)_{i\in\mathbb{N}}$ be a sequence in \mathcal{F} and let $F\in\mathcal{F}$.

- (a) Then the following are equivalent:
 - (a.i) $\limsup_{j\to\infty} F_j \subseteq F$.
 - (a.ii) For all $C \in \mathcal{C}$ with $F \cap C = \emptyset$ we have $F_j \cap C = \emptyset$ for almost all $j \in \mathbb{N}$.
 - (a.iii) For any subsequence $(F_{j_k})_{k\in\mathbb{N}}$ of $(F_j)_{j\in\mathbb{N}}$ and any convergent sequence $(x_k)_{k\in\mathbb{N}}$ with $x_k\in F_{j_k}$ for all $k\in\mathbb{N}$, we have $\lim_{k\to\infty}x_k\in F$.
- (b) The following are also equivalent:
 - (b.i) $\liminf_{j\to\infty} F_j \supseteq F$.
 - (b.ii) For all $G \in \mathcal{G}$ with $F \cap G \neq \emptyset$ we have $F_j \cap G \neq \emptyset$ for almost all $j \in \mathbb{N}$.
 - (b.iii) For any $x \in F$ there is a sequence $(x_j)_{j \in \mathbb{N}}$ with $x_j \in F_j$ for almost all j and $\lim_{j \to \infty} x_j = x$.

Proof: (a) The equivalence $(a.ii) \Leftrightarrow (a.iii)$ is already known.

- $(a.iii) \Rightarrow (a.i)$ Let $x \in \limsup_{j \to \infty} F_j$. There is a strictly monotonically increasing sequence $(j_k)_{k \in \mathbb{N}}$ such that
- $B_{\frac{1}{k}}(x) \cap F_{j_k} \neq \emptyset$. So choose a sequence $x_k \in B_{\frac{1}{k}}(x) \cap F_{j_k}$. We have $\lim_{k \to \infty} x_k = x$ and so (a.iii) implies $x \in F$.
- $(a.i) \Rightarrow (a.iii)$ Let $(F_{j_k})_{k \in \mathbb{N}}$ and $(x_k)_{k \in \mathbb{N}}$ be as in (a.iii), $x := \lim_{x \to \infty} \widetilde{x_k}$. Let $\epsilon > 0$. Then $x_k \in B_{\epsilon}(x)$ for infinitely many k and, in particular, $B_{\epsilon}(x) \cap F_{j_k} \neq \emptyset$. So $x \in \limsup_{x \to \infty} F_j$. By (a.i) we get $x \in F$.
- (b) $(b.i) \Rightarrow (b.ii)$ Let $x \in F$. By (b.i) we have $x \in \liminf_{j \to \infty} F_j$, so for any $k \in \mathbb{N}$ there is a number N_k with $B_{\frac{1}{k}}(x) \cap F_j \neq \emptyset$ for all $j > N_k$. So for $j > N_1$ put $k_j := \min\{k \in \mathbb{N} \mid j < N_k\}$. Then for $k \leq k_j$ we have $B_{\frac{1}{k}} \cap F_j \neq \emptyset$. So we can choose a sequence $(x_j)_{j \in \mathbb{N}}$ with $x_j \in B_{\frac{1}{k_j}}(x) \cap F_j$ for all $j > N_1$, since k could be chosen arbitrarily large, the sequence $(k_j)_{j \in \mathbb{N}}$ is not bounded. Since it is monotonically increasing, $\lim_{j \to \infty} k_j = \infty$. So $\lim_{j \to \infty} x_j = x$.
- $(b.iii) \Rightarrow (b.i)$ Let $x \in F$. By (b.iii) there is a sequence $(x_j)_{j \in \mathbb{N}}$ with $\lim_{j \to \infty} x_j = x$ and $x_j \in F_j$ for almost all $j \in \mathbb{N}$. Let $\epsilon > 0$. Then $x_j \in B_{\epsilon}(x) \cap F_j$ for almost all j and, in particular, this intersection is non-empty. Hence $x \in \liminf_{j \to \infty} F_j$.

Theorem 1.18. Let M be a metric space. A function $\varphi: M \to \mathcal{F}$ that is either upper semicontinuous or lower semicontinuous is measurable if M is equipped with the Borel- σ -algebra and \mathcal{F} is equipped with the Matheron- σ -algebra.

Proof: We have to show that $\varphi^{-1}(A)$ is a Borel set in M for all A in a generating system of the Matheron- σ -algebra. We know that it is generated by $\{\mathcal{F}^C \mid C \in \mathcal{C}\}$ and by $\{\mathcal{F}_G \mid G \in \mathcal{G}\}$. If φ is upper semicontinuous, then $\varphi^{-1}(\mathcal{F}^C)$, $C \in \mathcal{C}$, are open sets, while if φ is lower semicontinuous, then $\varphi^{-1}(\mathcal{F}_G)$, $G \in \mathcal{G}$, are open sets. Hence these sets are Borel sets.

Examples: 1) The map $\mathcal{F} \times \mathcal{F} \to \mathcal{F}$, $(F, F') \mapsto F \cap F'$ is upper semicontinuous. Indeed, let $(F_i)_{i \in \mathbb{N}}$ and $(F_i')_{i \in \mathbb{N}}$ be sequences in \mathcal{F} converging to limits F resp. F'. We have to show $\limsup_{i \to \infty} F_i \cap F_i' \subseteq F \cap F'$. Choose a subsequence

- $(F_{i_k} \cap F'_{i_k})_{k \in \mathbb{N}}$ and a convergent sequence $(x_k)_{k \in \mathbb{N}}$ with $x_k \in F_{i_k} \cap F'_{i_k}$. Since we assume that F and F' are the limits of $(F_i)_{i \in \mathbb{N}}$ resp. $(F'_i)_{i \in \mathbb{N}}$, we have $x := \lim_{k \to \infty} x_k \in F$ and $x \in F'$. Thus $x \in F \cap F'$, which completes the proof.
- 2) This map is not lower semicontinuous in $E = \mathbb{R}^d$. For example, choose $F_i = [0,1]^d$ for all $i \in \mathbb{N}$ and $F_i' = \left[\frac{1}{i} + 1, \frac{1}{i} + 2\right] \times [0,1]^{d-1}$ (the unit cube shifted by $1 + \frac{1}{i}$ in the direction of e_1 , the first vector of the standard basis).

Then $\lim_{i\to\infty}F_i=[0,1]^d$ and $\lim_{i\to\infty}F_i^{'}=[1,2]\times[0,1]^{d-1}$. So $\lim_{i\to\infty}\left(F_i\cap F_i^{'}\right)=\varnothing$, but $\lim_{i\to\infty}F_i\cap\lim_{i\to\infty}F_i^{'}=\{1\}\times[0,1]^{d-1}$. So the map is not lower semicontinuous.

3) For $E = \mathbb{R}^d$, the map $\partial : \mathcal{F} \to \mathcal{F}$, $F \mapsto \operatorname{bd} F$ is lower semicontinuous. We will show that $\partial^{-1}(\mathcal{F}_G)$ is open in \mathcal{F} for any $G \in \mathcal{G}$. There are $x_i, \epsilon_i, i \in I$, with $G = \bigcup_{i \in I} B_{\epsilon_i}(x_i)$. We have

$$\partial^{-1}(\mathcal{F}_G) = \partial^{-1}\left(\bigcup_{i \in I} \mathcal{F}_{B_{\epsilon_i}(x_i)}\right) = \bigcup_{i \in I} \partial^{-1}(\mathcal{F}_{B_{\epsilon_i}(x_i)});$$

so it suffices to show that $\partial^{-1}(\mathcal{F}_{B_{\epsilon}(x)})$ is open for $\epsilon > 0, x \in E$. Indeed,

$$\begin{split} \partial^{-1}(\mathcal{F}_{B_{\epsilon}(x)}) &= \{ F \in \mathcal{F} \mid \operatorname{bd} F \in \mathcal{F}_{B_{\epsilon}(x)} \} \\ &= \{ F \in \mathcal{F} \mid \operatorname{bd} F \cap B_{\epsilon}(x) \neq \varnothing \} \\ &= \{ F \in \mathcal{F} \mid F \cap B_{\epsilon}(x) \neq \varnothing \text{ and } F^{C} \cap B_{\epsilon}(x) \neq \varnothing \} \\ &= F_{B_{\epsilon}(x)} \cap \{ F \in \mathcal{F} \mid B_{\epsilon}(x) \subseteq F \}^{C}. \end{split}$$

In order to show that $\{F \in \mathcal{F} \mid B_{\epsilon}(x) \subseteq F\}$ is closed, let $(F_j)_{j \in \mathbb{N}}$ be a sequence in \mathcal{F} with $B_{\epsilon}(x) \subseteq F_i$ for all $i \in \mathbb{N}$ that converges to a limit F. Clearly $B_{\epsilon}(x) \subseteq F$. Thus $\{F \in \mathcal{F} \mid B_{\epsilon}(x) \subseteq F\}$ is closed and therefore $\partial^{-1}(\mathcal{F}_{B_{\epsilon}(x)})$ is open.

1.3 Stationäre zufällige abgeschlossene Mengen

Lemma 1.19. Sei Z eine \mathbb{R}^d -wertige zufällige abgeschlossene Menge und X ein \mathbb{R}^d -wertiger Zufallsvektor. Dann ist auch Z+X eine zufällige abgeschlossene Menge.

Beweis: Laut Aufgabe 1c) von Übungsblatt 2 ist $\mathbb{R}^d \to \mathcal{F}$, $x \mapsto \{x\}$ stetig. Laut Aufgabe 1c) von Übungsblatt 3 ist $\mathcal{F} \times \mathcal{C} \to \mathcal{F}$, $(F,C) \mapsto F + C$ halbstetig nach unten. Also ist $\mathcal{F} \times \mathbb{R}^d \to \mathcal{F}$, $(A,x) \mapsto A + x$ halbstetig nach unten und somit messbar.

Definition 1.20. Eine zufällige abgeschlossene Menge in \mathbb{R}^d heißt stationär, falls

$$Z \stackrel{d}{=} Z + x,$$

für jedes $x \in \mathbb{R}^d$.

Lemma 1.21. Eine zufällige abgeschlossene Menge Z ist genau dann stationär, wenn ihr Kapazitätsfunktional T_Z verschiebungsinvariant ist, d.h.

$$T_Z(C) = T_Z(C+x), C \in \mathcal{C}, x \in \mathbb{R}^d.$$

Beweis: Es gilt $T_Z(C+x) = \mathbb{P}(Z \cap (C+x) \neq \emptyset) = \mathbb{P}((Z-x) \cap C \neq \emptyset) = T_{Z-x}(C)$. Also ist das Kapazitätsfunktional T_Z von Z genau dann verschiebungsinvariant, wenn alle zufälligen abgeschlossenen Menge $Z-x, x \in \mathbb{R}^d$, dasselbe Kapazitätsfunktional haben. Dies ist aber äquivalent dazu, dass sie dieselbe Verteilung haben, also dass Z stationär ist.

Beispiel: Konstruktion einer stationären zufälligen abgeschlossenen Menge. Seien $A_z, z \in \mathbb{Z}^d$, zufällige abgeschlossene Mengen. Falls

$$\tilde{Z} = \bigcup_{z \in \mathbb{Z}^d} A_z + z$$

eine zufällige abgeschlossene Menge ist, dann ist

$$Z = \tilde{Z} + U$$

eine stationäre zufällige abgeschlossene Menge, wobei $U \sim U\left([0,1]^d\right)$ unabhängig von $(A_z)_{z \in \mathbb{Z}^d}$ sei. Sei $x \in \mathbb{R}^d$ und $C \in \mathcal{C}$. Wir zeigen

$$\mathbb{P}\left((Z+x)\cap C\neq\varnothing\right)=\mathbb{P}\left(Z\cap C\neq\varnothing\right)$$

Zerlege hierfür x+U=y+R+S mit $y_i=\lfloor x_i\rfloor, i=1,\ldots,d$, und $R_i\in\{0,1\}, S_i\in[0,1)$. Dann gilt $S\sim U\left([0,1]^d\right)$. Es folgt

$$\mathbb{P}\left((Z+x)\cap C\neq\varnothing\right) = \mathbb{P}\left((\tilde{Z}+y+R+S)\cap C\neq\varnothing\right) \\
= \sum_{r\in\{0,1\}^d} \mathbb{P}\left((\tilde{Z}+y+r+S)\cap C\neq\varnothing\mid r=R\right) \mathbb{P}\left(r=R\right) \\
= \sum_{r\in\{0,1\}^d} \mathbb{P}\left(\left(\bigcup_{z\in\mathbb{Z}^d} A_z+z+y+r+S\right)\cap C\neq\varnothing\mid r=R\right) \mathbb{P}\left(r=R\right) \\
= \sum_{r\in\{0,1\}^d} \mathbb{P}\left(\left(\bigcup_{\tilde{z}\in\mathbb{Z}^d} A_{\tilde{z}-y-r}+\tilde{z}+S\right)\cap C\neq\varnothing\mid r=R\right) \mathbb{P}\left(r=R\right) \\
= \sum_{r\in\{0,1\}^d} \mathbb{P}\left(Z\cap C\neq\varnothing\mid r=R\right) \mathbb{P}\left(r=R\right) \\
= \mathbb{P}\left(Z\cap C\neq\varnothing\right),$$

da $((A_{\tilde{z}-y-r})_{\tilde{z}\in\mathbb{Z}^d},U)$ die selbe Verteilung wie $((A_z)_{z\in\mathbb{Z}^d},U)$ hat. Also ist Z stationär.

Betrachte nun Kegel $K_{\alpha}(x, v) := \{z \in \mathbb{R}^d \mid \langle z - x, v \rangle \geq ||z - x|| \, ||v|| \cos \alpha \}$ für $x \in \mathbb{R}^d, v \in \mathbb{R}^d \setminus \{0\}, \alpha \in (0, \pi)$. Dies ist ein Kegel mit Spitze x, Achse in Richtung v und Winkel α zwischen der Achse und dem Rand.

Theorem 1.22. Sei Z ein stationäre zufällige abgeschlossene Menge. Sei A das Ereignis $\{Z = \{\emptyset\}\}$ und

$$B = \{ Z \cap K_{\alpha}(x, v) \neq \varnothing \text{ für alle } x \in \mathbb{R}^d, v \in \mathbb{R}^d \setminus \{0\}, \alpha \in (0, \pi) \}$$

das Ereignis "Z schneidet jeden Kegel". Dann ist $\mathbb{P}(A \cup B) = 1$.

Beweis: Wir zeigen zunächst, dass B mit dem Ereignis

$$\tilde{B} = \{Z \cap K_{\frac{1}{n}}(x,v) \neq \varnothing \text{ für } x \in \mathbb{Q}, v \in \mathbb{Q}^d \setminus \{0\}, n \in \mathbb{N}\}$$

übereinstimmt. Offensichtlich $B \subseteq \tilde{B}$. Sei also \tilde{B} erfüllt und sei $x \in \mathbb{R}^d, v \in \mathbb{R}^d, \alpha \in (0, \pi)$, o.B.d.A $\alpha \in (0, \frac{\pi}{2})$. Wähle $n \in \mathbb{N}$ mit $n > \frac{1}{\alpha}, \tilde{v} \in \mathbb{Q}^d$ mit $\langle v, \tilde{v} \rangle \geq ||v|| \, ||\tilde{v}|| \cos \left(\alpha - \frac{1}{n}\right)$ und $\tilde{x} \in K_{\alpha}(x, v)$. Dann ist $K_{\frac{1}{n}}(\tilde{x}, \tilde{v}) \subseteq K_{\alpha}(x, v)$ (Übung!).

Somit folgt $Z \cap K_{\frac{1}{2}}(\tilde{x}, \tilde{v}) \neq \emptyset$ und B ist erfüllt.

Für feste $x \in \mathbb{Q}^d$, $v \in \mathbb{Q}^d \setminus \{0\}$ und $n \in \mathbb{N}$ betrachte nun die Ereignisse

$$C_m := \{ Z \cap K_{\frac{1}{n}}(x + mv, v) \neq \varnothing \}, \ m \in \mathbb{Z}.$$

Es gilt:

- $C_m \supseteq C_{m+1}, m \in \mathbb{Z}$, und $\cup C_m = A^C$, also $\lim_{m \to -\infty} \mathbb{P}(C_m) = \mathbb{P}(A^C)$
- Wegen der Stationarität von Z ist für $m \in \mathbb{N}$

$$\mathbb{P}(C_m) = \mathbb{P}\left((Z - mv) \cap K_{\frac{1}{n}}(x, v) \neq \varnothing\right)$$
$$= \mathbb{P}\left(Z \cap K_{\frac{1}{n}}(x, v) \neq \varnothing\right)$$
$$= \mathbb{P}(C_0)$$

Also $\mathbb{P}(C_m) = \mathbb{P}(A^C)$ für alle $m \in \mathbb{N}$ und wegen $C_0 \subseteq A^C$ folgt $\mathbb{P}(A^C \setminus C_0) = 0$. Wir benennen C_0 in $C_{x,v,n}$ um und erhalten

$$B = \bigcap_{x,v,n} C_{x,v,n}.$$

Also

$$\mathbb{P}\left(A^C \backslash B\right) = \mathbb{P}\left(\bigcup_{x,v,n} \left(A^C \backslash C_{x,v,n}\right)\right) = 0,$$

d.h. $\mathbb{P}(A \cup B) = 1$.

Definition 1.23. Sei Z eine stationäre zufällige abgeschlossene Menge. Dann heißt $p := \mathbb{P}(0 \in Z)$ der Volumenanteil von Z.

Theorem 1.24. Für eine stationäre zufällige abgeschlossene Menge Z in \mathbb{R}^d gilt:

(1)
$$p = \frac{\mathbb{E}\lambda_d(Z \cap B)}{\lambda_d(B)}$$
 für jedes $B \in \mathcal{B}(\mathbb{R}^d)$ mit $0 < \lambda_d(B) < \infty$.

(2)
$$p = T_Z(\{0\})$$

Beweis: (1) Nach dem Satz von Fubini gilt

$$\mathbb{E}\left[\lambda_d(Z \cap B)\right] = \mathbb{E}\left[\int_{\mathbb{R}^d} \mathbf{1}_Z(x) \mathbf{1}_B(x) dx\right]$$
$$= \int_{\mathbb{R}^d} \mathbb{E}\left[\mathbf{1}_Z(x)\right] \mathbf{1}_B(x) dx$$
$$= \int_{\mathbb{R}^d} \mathbb{P}\left(x \in Z\right) \mathbf{1}_B(x) dx$$
$$= p \cdot \lambda_d(B).$$

Hierbei haben wir verwendet, dass $\mathcal{F} \times \mathbb{R}^d \to \mathbb{R}$, $(A, z) \mapsto \mathbf{1}_A(z)$ messbar ist, was wir unten zeigen werden. (2) Es gilt

$$p = \mathbb{P}\left(0 \in Z\right) = \mathbb{P}\left(\left\{0\right\} \cap Z \neq \varnothing\right) = T_Z(\left\{0\right\}\right). \quad \Box$$

Lemma 1.25. Die Abbildung $\mathcal{F} \times E \to \mathbb{R}$, $(A, z) \mapsto \mathbf{1}_A(z)$ ist in jeden separablen, lokal-kompakten Raum halbstetig nach oben und deshalb messbar.

Beweis: Beachte, dass eine Funktion $f: M \to \mathbb{R}$ auf einem metrischen Raum M halbstetig nach oben heißt, falls

$$\limsup_{j \to \infty} f(x_j) \le f(\lim_{j \to \infty} x_j)$$

für jede konvergente Folge $(x_j)_{j\in\mathbb{N}}$ in M. Sei also $(A_j)_{j\in\mathbb{N}}$ eine Folge in \mathcal{F} , die bzgl. einer Metrik der abgeschlossenen Konvergenz gegen $A\in F$ konvergiert, und $(x_j)_{j\in\mathbb{N}}$ eine Folge in E, die gegen $x\in E$ konvergiert. Wir müssen zeigen, dass aus $\lim\sup \mathbf{1}_{A_j}(x_j)=1$ bereits $\mathbf{1}_A(x)=1$ folgt.

Aus $\limsup_{j\to\infty} \mathbf{1}_{A_j}(x_j) = 1$ folgt die Existenz einer Teilfolge $((A_{j_k}, x_{j_k}))_{k\in\mathbb{N}}$ von $((A_j, x_j))_{j\in\mathbb{N}}$ mit $x_{j_k} \in A_{j_k}$ für alle $k \in \mathbb{N}$. Es folgt $x = \lim_{k\to\infty} x_{j_k} \in A$ und somit $\mathbf{1}_A(x) = 1$.

Definition 1.26. Sei Z eine stationäre zufällige abgeschlossene Menge in \mathbb{R}^d . Dann heißt

$$C: \mathbb{R}^d \to \mathbb{R}, x \mapsto \mathbb{P} (0 \in Z, x \in Z)$$

Kovarianz von Z.

Theorem 1.27. Sei Z eine stationäre zufällige abgeschlossene Menge in \mathbb{R}^d . Dann gilt:

- (1) C(0) = p
- (2) $C(-x) = C(x), x \in \mathbb{R}^d$
- (3) $C(x) = 2p T_Z(\{0, x\}), x \in \mathbb{R}^d$.
- (4) C(x) ist der Volumenanteil von $Z \cap (Z x)$.

Beweis: (1) $C(0) = \mathbb{P}(0 \in Z) = p$

(2)
$$C(-x) = \mathbb{P}(0 \in Z, -x \in Z) = \mathbb{P}(0 \in Z - x, -x \in Z - x) = \mathbb{P}(x \in Z, 0 \in Z) = C(x)$$

$$(3) \ C(x) = \mathbb{P}(0 \in Z, x \in Z) = \mathbb{P}(0 \in Z) + \mathbb{P}(x \in Z) - \mathbb{P}(\{0 \in Z\} \cup \{x \in Z\}) = p + p - T_Z(\{0, x\})$$

(4) Der Beweis der Messbarkeit wird übergangen.

$$C(x) = \mathbb{P}(0 \in Z, x \in Z) = \mathbb{P}(0 \in Z \cap (Z - x))$$

Kapitel 2

Keim-Korn-Modelle

2.1 Einfache markierte Punktprozesse

Es bezeichne #M die Anzahl der Elemente einer Menge M.

Definition 2.1.

- i. Eine zufällige abgeschlossene Menge X heißt (einfacher) Punktprozess, falls $\mathbb{P}(\#(X \cap C) < \infty) = 1$ für alle $C \in \mathcal{C}$.
- ii. Seien E und M zwei lokalkompakte metrische Räume mit abzählbaren Basen. Eine zufällige abgeschlossene Menge X in $E \times M$ heißt (einfacher) markierter Punktprozess im Zustandsraum E mit Markenraum M, falls $\mathbb{P}(\#(X \cap (C \times M)) < \infty) = 1$ für jede kompakte Menge $C \subseteq E$.

Bem.

- i. Ein unmarkierter Punktprozess ist der Spezialfall #M=1 eines markierten Punktprozesses.
- ii. Ist M kompakt, dann ist X genau dann ein markierter Punktprozess im Zustandsraum E mit Markenraum M, wenn X ein Punktprozess in $E \times M$ ist. Aber es gibt (unabhängig davon, ob M kompakt ist) Unterschiede in der Anschauung: Bei einem Punktprozess in $E \times M$ sind beide Komponenten der Punkte gleichberechtigt. Beim einem markierten Punktprozessen in E mit Markenraum M gibt die erste Koordinate die Lage des Punktes im Raum an und die zweite ist eine Zusatzinformation.

Beispiel. Für E = [0,3] und M = [0,1] ist eine Realisierung eines Punktprozesses X durch $\{\left(\frac{1}{2},\frac{1}{2}\right),\left(1,\frac{1}{2}\right),\left(\frac{5}{2},1\right)\}$ gegeben.

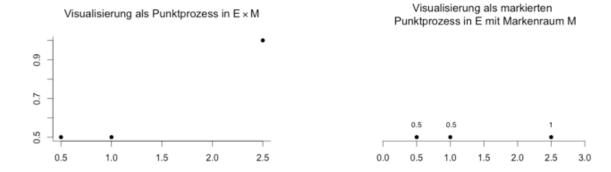


Abbildung 2.1: Visualisierung

Theorem 2.2. Sei X ein Punktprozess auf E mit Markenraum M. Dann gibt es Folgen $(\xi_i)_{i\in\mathbb{N}}$ bzw. $(\mu_i)_{i\in\mathbb{N}}$ von Zufallsvariablen in E bzw. M, so dass

$$X = \{(\xi_1, \mu_1), \dots, (\xi_k, \mu_k)\}, \text{ falls } \#X = k,$$

 $X = \{(\xi_1, \mu_1), (\xi_2, \mu_2), \dots\}, \text{ falls } \#X = \infty,$

fast sicher.

ohne Beweis.

Definition 2.3. Das Intensitätsmaß eines markierten Punktprozesses X in E mit Markenraum M ist das durch

$$\Lambda(B) = \mathbb{E} \# (X \cap B), B \in \mathcal{B}(E \times M),$$

definierte Maß.

Der Nachweis, dass $M \mapsto \#M$ messbar ist, wird übergangen.

Definition 2.4. Ein markierter Punktprozess X auf \mathbb{R}^d mit Markenraum M heißt stationär, falls

$$X + v \stackrel{d}{=} X, \ v \in \mathbb{R}^d,$$

wobei $X + v := \{(x_1 + v, x_2) \in \mathbb{R}^d \times M \mid (x_1, x_2) \in X\}.$

Ein Maß μ auf E heißt lokal-endlich, falls $\mu(C) < \infty$ für alle $C \in \mathcal{C}$.

Theorem 2.5. Sei X ein stationärer markierter Punktprozess auf \mathbb{R}^d mit Markenraum M. Sei Λ das Intensitätsma β von X. Falls Λ lokal-endlich ist, dann gibt es eine Konstante $\gamma \geq 0$ und ein Wahrscheinlichkeitsma β \mathbb{Q} auf M, so dass $\Lambda = \gamma \cdot \lambda_d \otimes \mathbb{Q}$.

Falls $\gamma > 0$, dann ist \mathbb{Q} eindeutig bestimmt.

Definition 2.6. In der Situation von Theorem 2.5 heißt γ die Intensität von X und \mathbb{Q} die Markenverteilung von X. Eine Zufallsvariable auf M mit Verteilung \mathbb{Q} heißt typische Marke von X.

Lemma 2.7. Sei μ ein lokal-endliches verschiebungsinvariantes Maß auf \mathbb{R}^d , d.h. $\mu(A+v) = \mu(A)$, $A \in \mathcal{B}(\mathbb{R}^d)$, $v \in \mathbb{R}^d$. Dann gibt es eine Konstante $c \geq 0$ mit $\mu(A) = c \cdot \lambda_d(A)$ für alle $A \in \mathcal{B}(\mathbb{R}^d)$.

Ohne Beweis.

Beweis des Satzes: Sei $A \in \mathcal{B}(M)$. Dann ist μ_A , definiert durch $\mu_A(B) := \Lambda(B \times A), \ B \in \mathcal{B}(\mathbb{R}^d)$, ein Maß, das lokal-endlich und wegen

$$\mu_A (B + v) = \mathbb{E} \# (X \cap ((B + v) \times A))$$

$$= \mathbb{E} \# ((X - v) \cap (B \times A))$$

$$= \mathbb{E} \# (X \cap (B \times A))$$

$$= \mu_A(B)$$

translationsinvariant ist. Wegen dem Lemma gibt es also eine Konstante $c_A \geq 0$ mit $\mu_A(B) = c_A \lambda_d(B), B \in \mathcal{B}(\mathbb{R}^d)$. Die Funktion $\mathcal{B}(M) \to \mathbb{R}, A \mapsto c_A$ ist wegen $c_A = \lambda_d \left([0,1)^d \times A\right)$ ein endliches Maß. Also ist für $\gamma := c_A$ $\mathbb{Q}(A) := \frac{1}{\gamma} c_A$ ein Wahrscheinlichkeitsmaß und es gilt $\Lambda(B \times A) = \gamma \cdot \lambda_d(B) \cdot \mathbb{Q}(A)$ für $A \in \mathcal{B}(M), B \in \mathcal{B}(\mathbb{R}^d)$, d.h. $\Lambda = \gamma \cdot \lambda_d \otimes \mathbb{Q}$.

Definition 2.8. Ein markierter Punktprozess X in E mit Markenraum M heißt Poissonprozess, wenn $\#(X \cap B)$ für alle $B \in \mathcal{B}(E \times M)$ Poisson-verteilt ist. Hierbei betrachten wir Zufallsvariablen N mit $\mathbb{P}(N=0)=1$ oder $\mathbb{P}(N=\infty)=1$ als Poisson-verteilt.

Definition 2.9.

i. Sei μ ein Maß auf einem messbaren Raum (Ω, \mathcal{A}) . Ein Punkt $x \in \Omega$ mit $\mu(\{x\}) > 0$ heißt Atom von μ .

ii. Ein Maß heißt atomfrei, falls es kein Atom hat.

Lemma 2.10. Das Intensitätsma β Λ eines Poissonprozesses X ist atomfrei und lokal-endlich.

Beweis: Sei $(x_1, x_2) \in E \times M$. Es ist $\mathbb{P}(\#(X \cap \{(x_1, x_2)\}) \geq 2) = 0$, also $\mathbb{P}(\#(X \cap \{(x_1, x_2)\}) = 0) = 1$, weil $X \cap \{(x_1, x_2)\}$ Poisson-verteilt ist. Somit $\Lambda(\{x_1, x_2\}) = \mathbb{E}\#(X \cap \{(x_1, x_2)\}) = 0$. Sei $C \subseteq E \times M$ kompakt. Dann ist $\mathbb{P}(\#(X \cap C) < \infty) = 1$. Weil $\#(X \cap C)$ Poisson-verteilt ist, folgt $\Lambda(C) = \mathbb{E}\#(X \cap C) < \infty$.

Theorem 2.11. Sei Λ ein atomfreies $Ma\beta$ auf $E \times M$ mit $\Lambda(C \times M) < \infty$ für $C \in \mathcal{C}$. Dann gibt es einen Poissonprozess X auf E mit Markenraum M, der Intensitätsma $\beta \Lambda$ hat.

Ohne Beweis.

Theorem 2.12. Seien X und Y zwei Poissonprozesse auf E mit Markenraum M, die dasselbe Intensitätsmaß haben. Dann ist $X \stackrel{d}{=} Y$.

Beweis: Sei $C \in \mathcal{C}$. Das Kapazitätsfunktional von X ist gegeben durch

$$T_X(C) = \mathbb{P}(X \cap C \neq \varnothing) = \mathbb{P}(\#(X \cap C) \ge 1)$$
$$= 1 - \exp\{-\mathbb{E}\#(X \cap C)\}$$
$$= 1 - \exp\{-\Lambda(C)\}.$$

Da die gleiche Rechnung für das Kapazitätsfunktional von Y gibt, folgt $T_X(C) = T_Y(C)$ für alle $C \in \mathcal{C}$ und somit $X \stackrel{d}{=} Y$.

Theorem 2.13. Sei X ein Poissonprozess in E mit Markenraum M. Dann sind $\#(X \cap A_1), \ldots, \#(X \cap A_n)$ unabhängig für disjunkte Borel-Mengen $A_1, \ldots, A_n \subseteq E \times M$.

Beweis: Wir konstruieren einen weiteren Prozess Y, für den diese Zufallsvariablen offensichtlich unabhängig sind und zeigen, dass dieser die selbe Verteilung wie X hat. Sei Λ das Intensitätsmaß von X und $A_{n+1} := (E \times M) \setminus \bigcup_{j=1}^{n} A_{j}$.

Seien Y_1, \dots, Y_{n+1} unabhängige Kopien von X. Definiere

$$Y = (Y_1 \cap A_1) \cup \cdots \cup (Y_{n+1} \cap A_{n+1}).$$

Dann sind $\#(Y \cap A_1), \ldots, \#(Y \cap A_{n+1})$ unabhängig. Es bleibt zu zeigen, dass Y die gleiche Verteilung wie X hat, also ein Poissonprozess mit Intensitätsmaß Λ ist. Für $B \in \mathcal{B}(E \times M)$ ist

$$\#(Y \cap B) = \sum_{i=1}^{n+1} \#(Y \cap B \cap A_i) = \sum_{i=1}^{n+1} \#(Y_i \cap (B \cap A_i))$$

eine Summe von unabhängigen Poisson-verteilten Zufallsvariablen. Diese ist Poisson-verteilt. Weiter ist das Intensitätsmaß von Y gegeben durch

$$\mathbb{E}\#(Y \cap B) = \sum_{i=1}^{n+1} \mathbb{E}\#(Y_i \cap (B \cap A_i)) = \sum_{i=1}^{n+1} \Lambda(B \cap A_i) = \Lambda(B).$$

Definition 2.14. Sei X ein Punktprozess auf E mit Markenraum M. Dann heißt $X^0 := \{x \mid (x,m) \in X\}$ der zu X gehörige unmarkierte Punktprozess.

Theorem 2.15. Sei X ein Poissonprozess auf E mit Markenraum M. Dann ist der unmarkierte Punktprozess X^0 ein Poissonprozess auf E.

Beweis: Die Messbarkeit folgt daraus, dass $X^0(\omega) \in \mathcal{F}^C \iff X(\omega) \in \mathcal{F}^{C \times M}$ für jede kompakte Menge $C \subseteq \mathbb{R}^d$ gilt und M eine abzählbare Vereinigung kompakter Mengen ist.

Für $B \in \mathcal{B}(E)$ ist $\#(X^0 \cap B) = \#(X \cap (B \times M))$ Poisson-verteilt und, falls B kompakt ist, f.s. endlich.

2.2 Keim-Korn-Modelle

Idee: Für einen markierten Punktprozess \tilde{X} auf \mathbb{R}^d mit Markenraum \mathcal{F} heißt die zufällige abgeschlossene Menge

$$Z = \bigcup_{(y,A) \in \tilde{X}} A + y$$

Keim-Korn-Modell. Der unmarkierte Punktprozess \tilde{X}^0 heißt Keimprozess und die Mengen A+y mit $(y,A)\in \tilde{X}$ heißen Körner.

Beispiel. Der markierte Punktprozess \tilde{X} sei gegeben durch

$$\tilde{X} = \{ (z, B(-z, U_z)) \mid z \in \mathbb{Z}^d \}$$

wobei $B(x,r) := \{ y \in \mathbb{R}^d \mid ||x-y|| \le r \} = \operatorname{cl} B_r(x)$ bezeichnet und $U_z, z \in \mathbb{Z}^d$, eine Folge unabhängiger U(0,1)- verteilter Zufallsvariablen ist. Dann ist $\bigcup_{(z,A)\in X} A+z = \bigcup_{z\in\mathbb{Z}^d} B(-z,U_z)+z = \bigcup_{z\in\mathbb{Z}^d} B(0,U_z)$. Dies ist mit Wkt. 1 der offene Ball $B_1(0)$. Es ist nämlich $\mathbb{P}(U_z < 1 \text{für alle } z \in \mathbb{Z}^d) = 1$ und $\mathbb{P}(U_z < r \text{für alle } z \in \mathbb{Z}^d) = \lim_{n\to\infty} r^n = 0$ für jedes $r \in \mathbb{Q} \cap (0,1)$.

Lemma 2.16. Seien $F_1, F_2, \dots \in \mathcal{F}$ abzählbar viele abgeschlossene Mengen. Falls jede kompakte Menge $C \in \mathcal{C}$ nur von endlich vielen $F_j, j \in \mathbb{N}$, geschnitten wird, dann ist $\bigcup_{j \in \mathbb{N}} F_j$ abgeschlossen.

Beweis: Sei $(x_k)_{k\in\mathbb{N}}$ eine Folge in $F:=\bigcup_{j\in\mathbb{N}}F_j$, die gegen $x\in E$ konvergiert. Nun gibt es eine kompakte Menge $C\subseteq E$ mit $x\in I$ nun $x\in I$ abgeschlossen ist, folgt $x\in I$ nun somit gibt es eine endliche Teilmenge $I\subseteq I$ mit $x\in I$ nun $x\in I$ nun gibt es eine kompakte Menge $x\in I$ nun gibt es eine kompakte M

Lemma 2.17. Sei $(Z_j)_{j\in\mathbb{N}}$ eine Folge von zufälligen abgeschlossenen Mengen, für die $\bigcup_{j\in\mathbb{N}} Z_j$ sicher abgeschlossen ist. Dann ist $Z:=\bigcup_{i\in\mathbb{N}} Z_j$ eine zufällige abgeschlossene Menge.

Beweis:

Sei $C \in \mathcal{C}$. Dann ist

$$\{\omega \in \Omega \mid Z(\omega) \in \mathcal{F}^C\} = \{\omega \in \Omega \mid \bigcup_{j \in \mathbb{N}} Z_j(\omega) \cap C = \emptyset\} = \bigcap_{j \in \mathbb{N}} \{\omega \in \Omega \mid Z_j(\omega) \in \mathcal{F}^C\}.$$

Dies ist eine abzählbare Vereinigung messbarer Mengen und daher messbar.

Theorem 2.18. Sei $\tilde{X} = \{(\xi_i, Z_i) \mid i \in \mathbb{N}\}$ ein stationärer Punktprozess auf \mathbb{R}^d mit Markenraum \mathcal{F} . Falls $\mathbb{E}[\lambda_d(Z_0 + K)] < \infty$ für ein $K \in \mathcal{C}$ mit inneren Punkten, int $K \neq \emptyset$, wobei Z_0 die typische Marke von X bezeichnet, dann schneidet f.s. jede Menge $C \in \mathcal{C}$ nur endlich viele Körner $\xi_i + Z_i$. Insbesondere ist $\bigcup_{i=1}^{\infty} \xi_i + Z_i$ (nach Abwandlung auf einer Nullmenge) eine zufällige abgeschlossene Menge.

Beweis: Für $L := K^*$ ist

$$\mathbb{E}\#\left(\tilde{X}\cap\{(x,z)\mid x+z\in\mathcal{F}_L\}\right) = \Lambda\left(\{(x,z)\mid x+z\in\mathcal{F}_L\}\right)$$

$$= \gamma \int_{\mathbb{R}^d} \mathbb{E}\left[\mathbf{1}_{\mathcal{F}_L}(x+Z_0)\right] dx$$

$$= \gamma \mathbb{E}\left[\int_{\mathbb{R}^d} \mathbf{1}_{L+Z_0^*}(x) dx\right]$$

$$= \gamma \mathbb{E}\left[\lambda_d(L+Z_0^*)\right]$$

$$= \gamma \mathbb{E}\left[\lambda_d(Z_0+L^*)\right]$$

Also wird L f.s. nur von endlich vielen Körnern $\xi_i + Z_i$ geschnitten. Wähle eine abzählbare, dichte Teilmenge $D \subseteq E$. Dann werden alle Mengen L+d, $d \in D$, f.s. nur von endlich vielen Körnern geschnitten. Weil aber L innere Punkte hat, wird jede Menge $C \in \mathcal{C}$ von endlich vielen Menge L+d, $d \in D$, überdeckt. Hieraus folgt die Behauptung. \square Wir setzen

(A) Jede Menge $C \in \mathcal{C}$ wird f.s. nur von endlich vielen Körnern $Z_i + \xi_i$ geschnitten,

da uns diese Bedingung noch öfters begegnen wird.

Ein Punktprozess auf \mathcal{F}' (dem System der nichtleeren abgeschlossenen Teilmengen von E) heißt Partikelprozess.

Theorem 2.19. Sei $\tilde{X} = ein \ markierter \ Punktprozess \ auf \ \mathbb{R}^d \ mit \ Markenraum \ \mathcal{F}'.$ Dann ist

$$X := \{A + y \mid (y, A) \in X\}$$

ein Partikelprozess, falls \tilde{X} die Bedingung (A) erfüllt.

Lemma 2.20. Für jede kompakte Menge $A \subseteq \mathcal{F}'$ gibt es eine kompakte Menge $C \subseteq E$ mit $A \subseteq \mathcal{F}_C$.

Ohne Beweis.

Beweis von Theorem 2.19:

- i. Lokal-Endlichkeit. Wir müssen zeigen, dass in jeder kompakten Menge $A \subseteq \mathcal{F}'$ nur endlich viele Punkte von X liegen. Wegen dem Lemma folgt dies aber aus (A).
- ii. Aus der Messbarkeit von \tilde{X} folgt die von (ξ_i, Z_i) , daraus die von $Z_i + \xi_i$, daraus die von $\{Z_i + \xi_i\}$, daraus die von X.

Theorem 2.21. Sei X ein Punktprozess auf $\mathcal{F}^{'}$ und $c: \mathcal{F}^{'} \to \mathbb{R}^{d}$ eine messbare Abbildung. Falls $\{c(A) \mid A \in X\}$ f.s. lokal-endlich ist, dann ist

$$\tilde{X} := \{ (c(A), A - c(A)) \mid A \in X \}$$

ein Punktprozess auf \mathbb{R}^d mit Markenraum \mathcal{F}' .

Beweis: klar.

Bem.: Ist der Punktprozess X aus obigem Satz auf \mathcal{C}' konzentriert, so verlangt man meist, dass die Zentrumsfunktion $c: \mathcal{C}' \to \mathbb{R}^d$ kovariant ist, d.h.

$$c(K+x) = c(K) + x, K \in \mathcal{C}', x \in \mathbb{R}^d.$$

Bsp.: Für eine nichtleere kompakte Menge $K \subseteq \mathbb{R}^d$ gibt es einer eindeutig bestimmte Kugel kleinsten Radius, die K enthält. Ohne Beweis. Die Abbildung, die jeder Menge $K \in \mathcal{C}'$ den Mittelpunkt dieser Kugel zuordnet, ist offensichtlich kovariant. Weiter ist die Abbildung messbar (ohne Beweis).

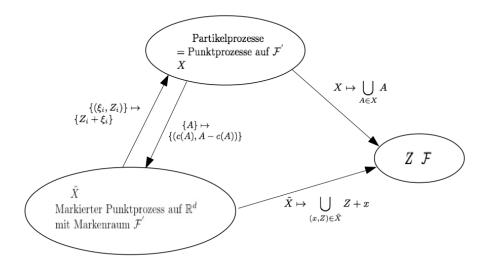


Abbildung 2.2: Partikelprozesse, die zugehörigen markierten Punktprozesse und Keim-Korn-Modelle

2.3 Das Boolesche Modell

Theorem 2.22. Sei $c: \mathcal{C}' \to \mathbb{R}^d$ eine messbare, kovariante Abbildung.

- i. Sei \tilde{X} ein Poissonprozess auf \mathbb{R}^d mit Markenraum C_0 , der Bedingung (A) erfüllt. Dann ist $X := \{A + y \mid (y, A) \in X\}$ ein Poissonprozess auf C'.
- ii. Sei X ein Poissonprozess auf C'. Dann ist

$$\tilde{X} := \{ (c(A), A - c(A)) \mid A \in X \}$$

ein Poissonprozess auf $\mathbb{R}^d \times \mathcal{C}'$.

Beweis:

i. Sei $B \subseteq \mathcal{C}'$ eine Borel-Menge und

$$\alpha: \mathbb{R}^d \times \mathcal{C}_0 \to \mathcal{C}', \ (y, A) \mapsto A + y.$$

Wegen der Bijektivität von α ist $\#(X \cap B) = \#\alpha^{-1}(X \cap B)$ eine Poisson-verteilte Zufallsvariable.

ii. genauso. \Box

Definition 2.23. Eine zufällige abgeschlossene Menge Z in \mathbb{R}^d heißt stationäres Boolesches Modell, falls es einen stationären markierten Prozess \tilde{X} auf \mathbb{R}^d mit Markenraum C' gibt, der ein Poissonprozess ist, so dass

$$Z \stackrel{d}{=} \bigcup_{(y,A)\in\tilde{X}} A + y.$$

Definition 2.24. Ein Partikelprozess X heißt stationär, falls

$$X \stackrel{d}{=} X + v, \ v \in \mathbb{R}^d,$$

 $wobei\ X+v=\{A+v\mid A\in X\}.$

Theorem 2.25. Eine zufällige abgeschlossene Menge Z in \mathbb{R}^d ist genau dann ein stationäres Boolesches Modell, wenn es einen stationären Poissonprozess X auf C' gibt, so dass

$$Z \stackrel{d}{=} \bigcup_{A \in X} A.$$

Beweis: Sei \tilde{X} wie aus der Definition des Booleschen Modells und $X = \{A + y \mid (y, A) \in \tilde{X}\}$. Dann ist X stationär und es gilt $Z \stackrel{d}{=} \bigcup_{A \in X} A$. Weiter ist Z ein Poissonprozess, da $\#(X \cap B) = \#(\tilde{X} \cap \alpha^{-1}(B))$ für $\alpha : \mathbb{R}^d \times \mathcal{C}' \to \mathcal{C}', (y, A) \mapsto A + y$. Da α nun nichtmehr bijektiv ist, ist diese Gleichheit nun nichtmehr trivial; wir übergehen ihren Nachweis.

Umgekehrt erfüllt für einen stationären Poissonprozess X auf \mathcal{C}' der Prozess $\tilde{X} = \{(c(A), A - c(A)) \mid A \in X\}$ die Eigenschaften aus der Definition des Booleschen Modells (alle Eigenschaften außer der Lokal-Endlichkeit sind trivial; diese übergehen wir).

Theorem 2.26. Sei X ein Poissonscher Partikelprozess und $Z = \bigcup_{A \in X} A$. Dann gilt

$$T_Z(C) = 1 - \exp\{-\Lambda(\mathcal{F}_C)\}, C \in \mathcal{C},$$

 $wobei\ \Lambda\ das\ Intensit \"{a}tsma\beta\ von\ X\ ist.$

Beweis:

$$\begin{split} T_Z(C) &= \mathbb{P}\left(Z \cap C \neq \varnothing\right) = 1 - \mathbb{P}(A \cap C = \varnothing \text{ für alle } A \in X) \\ &= 1 - \mathbb{P}(A \notin \mathcal{F}_C \text{ für alle } A \in X) \\ &= 1 - \mathbb{P}(\#(X \cap \mathcal{F}_C) = 0) \\ &= 1 - \exp\{-\Lambda(\mathcal{F}_C)\}, \end{split}$$

da $X \cap \mathcal{F}_C$ Poisson-verteilt mit Erwartungswert $\Lambda(\mathcal{F}_C)$ ist.

Korollar. Seien X und X zwei Poissonsche Partikelprozesse. Dann ist

$$\bigcup_{A \in X} A \stackrel{d}{=} \bigcup_{B \in X'} B$$

genau dann wenn $X \stackrel{d}{=} X'$.

Beweis: "⇐" klar.

"⇒" Wenn die Verteilungen und damit die Kapazitätsfunktionale von $\bigcup_{A \in X} A$ und $\bigcup_{B \in X'} B$ übereinstimmen, stimmen laut Theorem 2.26 die Intensitätsmasse X und X' auf Mengen der Form $\mathcal{F}_C, C \in \mathcal{C}$ überein. Wir übergehen den Beweis, dass die Intensitätsmasse auf ganz $\mathcal{B}(\mathcal{F})$ übereinstimmen. Da X und X' Poissonprozesse sind, stimmen ihre Verteilungen überein.

Korollar. Seien \tilde{X} und \tilde{X}' zwei stationäre Poissonprozesse auf \mathbb{R}^d mit Markenraum C_0 für eine feste Zentrumsfunktion $c: \mathcal{C}' \to \mathbb{R}^d$, die Bedingung (A) erfüllen. Dann ist

$$\bigcup_{(y,A)\in \tilde{X}}A+y\stackrel{d}{=}\bigcup_{(z,B)\in \tilde{X}'}B+z$$

genau dann wenn $\tilde{X} \stackrel{d}{=} \tilde{X}'$.

Die Verteilung eines Booleschen Modells Z legt also die Verteilung des definierenden markierten Poissonprozess \tilde{X} fest. Daher können wir die Intensität γ dieses Prozesses auch Intensität von Z nennen und das typische Korn von Z als typische Marke von X definieren. (Dieses hängt von der Wahl der Zentrumsfunktion $c: \mathcal{C}' \to \mathbb{R}^d$ ab.) Die Verteilung des typischen Korns heißt Kornverteilung.

Theorem 2.27. Sei Z ein stationäres Boolesches Modell in \mathbb{R}^d mit Intensität $\gamma > 0$ und Kornverteilung \mathbb{Q} . Dann gilt

$$T_Z(C) = 1 - \exp\left(-\gamma \int_{\mathcal{C}_0} \lambda_d(A + C^*) \mathbb{Q}(dA)\right), \ C \in \mathcal{C}.$$

Beweis: Übung.

Korollar. Sei Z ein stationäres Boolesches Modell auf \mathbb{R}^d mit Intensität $\gamma > 0$ und Kornverteilung \mathbb{Q} . Dann gilt

$$p = T_Z(\{0\}) = 1 - \exp\left\{-\gamma \int_{\mathcal{C}_0} \lambda_d(A) \mathbb{Q}(dA)\right\}$$

und

$$C(x) = 2p - T_Z(\{0, x\}) = 1 - 2\exp\left\{-\gamma \int_{\mathcal{C}_0} \lambda_d(A) \mathbb{Q}(dA)\right\} + \exp\left\{-\gamma \int_{\mathcal{C}_0} \lambda_d\left((A \cup (A + x))\right) \mathbb{Q}(dA)\right\}.$$

Kapitel 3

Mittelwerte für zufällige abgeschlossene Mengen

3.1 Mittelwerte für das Boolesche Modell

Beispiel: Für das erwartete Volumen eines Booleschen Modells Z in einer kompakten Menge $W\subseteq \mathbb{R}^d$ mit $0<\lambda_d(W)<\infty$ gilt

$$\frac{\mathbb{E}\lambda_d(W\cap Z)}{\lambda_d(W)} = p = 1 - \exp\left[-\gamma \int_{\mathcal{C}_0'} V_d(A) d\mathbb{Q}(A)\right],$$

wobei γ die Intensität des Booleschen Modells ist und $\mathbb Q$ seine Kornverteilung.

Ziel dieses Abschnitts ist es, vergleichbare Formeln für andere geometrische Funktionale herzuleiten.

Der Konvexring \mathcal{R} ist die Menge aller kompakten Mengen $L \subseteq \mathbb{R}^d$, die sich als Vereinigung

$$\bigcup_{i=1}^{N} K_i$$

von konvexen, kompakten Mengen $K_i \subseteq \mathbb{R}^d$ schreiben lassen. Das System der konvexen und kompakten Teilmengen des \mathbb{R}^d bezeichnen wir mit \mathcal{K} .

Lemma 3.1. Für $L_1, L_2 \in \mathcal{R}$ ist auch $L_1 \cap L_2 \in \mathcal{R}$ und $L_1 \cup L_2 \in \mathcal{R}$.

Beweis: Sei $L_1 = \bigcup_{i=1}^N K_i, \ K_1, \dots, K_N \in \mathcal{K}$ und $L_2 = \bigcup_{i=N+1}^M K_i, \ K_{N+1}, \dots, K_M \in \mathcal{K}$. Dann ist

$$L_1 \cup L_2 = \bigcup_{i=1}^M K_i \in \mathcal{R}$$

und

$$L_1 \cap L_2 = \bigcup_{i=1}^N \bigcup_{j=N+1}^M (K_i \cap K_j) \in \mathcal{R},$$

da $K_i \cap K_j \in \mathcal{K}$.

Definition 3.2. (i.) Ein Funktional $\varphi : \mathcal{R} \to \mathbb{R}$ heißt additiv, falls $\varphi(K \cup L) + \varphi(K \cap L) = \varphi(K) + \varphi(L)$, $K, L \in \mathcal{R}$ und $\varphi(\varnothing) = 0$.

(ii.) Ein Funktional heißt bedingt beschränkt, falls es auf allen Mengen der Form $\{L \in \mathcal{K} \mid L \subseteq K\}$, $K \in \mathcal{K}$, beschränkt ist.

Es sei $\mathcal{K}' := \mathcal{K} \setminus \{\emptyset\}$. Für eine messbare, kovariante Funktion $c : \mathcal{K}' \to \mathbb{R}^d$ ist

$$\mathcal{K}_0 := \{ K \in \mathcal{K}' \mid c(K) = 0 \}$$

das System der nicht-leeren, zentrierten, kompakten und konvexen Teilmengen des \mathbb{R}^d .

Theorem 3.3. Sei Z ein stationäres Boolesches Modell in \mathbb{R}^d mit konvexen Körnern, d.h. die Verteilung \mathbb{Q} des typischen Korns sei auf \mathcal{K}_0 konzentriert. Sei $W \in \mathcal{K}^{'}$ und $\varphi : \mathcal{R} \to \mathbb{R}$ ein messbares, additives und bedingt beschränktes Funktional. Dann ist

$$\mathbb{E}|\varphi(Z\cap W)|<\infty$$

und

$$\mathbb{E}\varphi(Z\cap W) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k!} \gamma^k \int_{\mathcal{K}_0} \dots \int_{\mathcal{K}_0} \phi(W; K_1, \dots, K_k) \mathbb{Q}(dK_1) \dots \mathbb{Q}(dK_k),$$

wobei γ die Intensität des Booleschen Modells ist und

$$\phi(W; K_1, \dots, K_k) = \int_{(\mathbb{R}^d)^k} \varphi(W \cap (K_1 + x_1) \cap \dots \cap (K_k + x_k)) (\lambda_d)^k (d(x_1, \dots, x_k)).$$

ohne Beweis.

Definition 3.4. Für $L \in \mathcal{R}$ bezeichne

$$M(L) := \lim_{\epsilon \to 0} \frac{\lambda_d(L_{\oplus \epsilon} \setminus L)}{\epsilon}$$

die Minkowski-Oberfläche, wobei $L_{\oplus \epsilon} := \{ y \in \mathbb{R}^d \mid ||x - y|| \le \epsilon \text{ für ein } x \in L \}.$

Bem.:

- (1) Der Limes existiert für alle $L \in \mathcal{R}$ (ohne Beweis).
- (2) Die Minkowski-Oberfläche gibt ziemlich gut das wieder, was man anschaulich als Oberfläche bezeichnen würde. Bei niederdimensionalen Teilen L wird hier aber der zweifache Flächeninhalt gezählt.

Bsp.: Die Menge $L = [0,1]^2 \cup [-1,0] \times \{0\} \subseteq E$ hat Minkowski-Oberfläche M(L) = 6.

Lemma 3.5. Die Minkowski-Oberfläche $M: \mathcal{R} \to \mathbb{R}$ ist messbar, bedingt bschränktes und additiv.

ohne Beweis.

Lemma 3.6. Es qilt

(i.)
$$\int_{\mathbb{R}^d} \lambda_d(K \cap (L+x)) dx = \lambda_d(K) \lambda_d(L), K, L \in \mathcal{C},$$

(ii.)
$$\int_{\mathbb{D}^d} M(K \cap (L+x)) dx = \lambda_d(K) M(L) + M(K) \lambda_d(L), K, L \in \mathbb{R}.$$

Beweis:

(i.)

$$\int_{\mathbb{R}^d} \lambda_d(K \cap (L+x)) dx = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \mathbf{1}_K(y) \mathbf{1}_{L+x}(y) dy \ dx = \int_{\mathbb{R}^d} \mathbf{1}_K(y) \int_{\mathbb{R}^d} \mathbf{1}_L(y-x) dx \ dy = \lambda_d(K) \lambda_d(L)$$

(ii.) Wie verwenden ohne Beweis, dass

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(\lambda_d (K_{\oplus \epsilon} \cap L_{\oplus \epsilon}) - \lambda_d ((K \cap L)_{\oplus \epsilon}) \right) = 0,$$

für $K, L \in \mathcal{R}$. Nun gilt

$$M(K \cap (L+x)) = \lim_{\epsilon \to 0} \frac{\lambda_d((K \cap (L+x))_{\oplus \epsilon}) - \lambda_d(K_{\oplus \epsilon} \cap (L+x)_{\oplus \epsilon})}{\epsilon} + \lim_{\epsilon \to 0} \frac{\lambda_d(K_{\oplus \epsilon} \cap (L_{\oplus \epsilon} + x)) - \lambda_d(K \cap (L+x))}{\epsilon}$$

Somit folgt aus dem Satz von der majorisierten Konvergenz - wir übergehen den Nachweis, dass dessen Voraussetzungen erfüllt sind - sowie aus Teil (i), dass

$$\begin{split} \int_{\mathbb{R}^d} M(K \cap (L+x)) \, dx &= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\mathbb{R}^d} \lambda_d(K_{\oplus \epsilon} \cap (L_{\oplus \epsilon} + x)) - \lambda_d(K \cap (L+x)) \, dx \\ &= \lim_{\epsilon \to 0} \frac{1}{\epsilon} [\lambda_d(K_{\oplus \epsilon}) \lambda_d(L_{\oplus \epsilon}) - \lambda_d(K) \lambda_d(L)] \\ &= \frac{\partial}{\partial \epsilon} \left(\lambda_d(K_{\oplus \epsilon}) \lambda_d(L_{\oplus \epsilon}) \right) |_{\epsilon = 0} \\ &= M(K) \lambda_d(L) + \lambda_d(K) M(L). \end{split}$$

Korollar: Für $K_0, \ldots, K_k \in \mathcal{R}$ gilt

$$\int_{(\mathbb{R}^d)^k} M(K_0 \cap (K_1 + x_1) \cap \dots \cap (K_k + x_k)) (\lambda_d)^k d(x_1, \dots, x_k) = \sum_{i=0}^k M(K_i) \prod_{j \neq i} \lambda_d(K_j).$$

Beweis: Induktives Anwenden des Satzes.

Korollar: Sei Z ein stationäres Boolesches Modell in \mathbb{R}^d mit konvexen Körnern. Sei $W \in \mathcal{K}'$. Dann ist

$$\mathbb{E}M(W \cap Z) = \lambda_d(W)\gamma \mathbb{E}[M(Z_0)]e^{-\gamma \mathbb{E}[\lambda_d(Z_0)]} + M(W)(1 - e^{-\gamma \mathbb{E}[\lambda_d(Z_0)]}),$$

wobei Z_0 das typische Korn von Z ist und γ die Intensität.

Beweis: Obiger Satz liefert

$$\mathbb{E}[M(Z\cap W)] = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k!} \gamma^k \int_{\mathcal{K}_0} \dots \int_{\mathcal{K}_0} \int_{(\mathbb{R}^d)^k} M(W\cap (K_1+x_1)\cap \dots (K_k+x_k)) \lambda(d(x_1,\dots,x_k))$$

$$\mathbb{Q}(dK_1) \dots \mathbb{Q}(dK_k)$$

$$= \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k!} \gamma^k \int_{\mathcal{K}_0} \dots \int_{\mathcal{K}_0} \left[M(W) \prod_{j=1}^k \lambda_d(K_j) + \sum_{i=1}^k M(K_i) \lambda_d(W) \prod_{j\neq i} \lambda_d(K_j) \right]$$

$$\mathbb{Q}(dK_1) \dots \mathbb{Q}(dK_k)$$

$$= -M(W) \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k!} \gamma^k (\mathbb{E}[\lambda_d(Z_0)])^k + \lambda_d(W) \mathbb{E}[M(Z_0)] \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k!} \gamma^k k(\mathbb{E}[\lambda_d(Z_0)])^{k-1}$$

$$= M(W) \cdot (1 - \exp\{-\gamma \mathbb{E}[\lambda_d(Z_0)]\}) + \lambda_d(W) \mathbb{E}[M(Z_0)] \gamma \exp\{-\gamma \mathbb{E}[\lambda_d(Z_0)]\}. \quad \Box$$