

Dr. Kirsten Schorning Dipl.-Math. Stefan Roth SoSe 2017 7. Juli 2017

# Angewandte Stochastik 1 - Übungsblatt 7

Alle Aufgaben auf diesem Übungsblatt sind noch **klausurrelevant**. Abgabe: Optional bis zum 19. Juli in Helmholtzstraße 18, Raum 1.45. Abholung ab Freitag, 21. Juli in vorher genanntem Raum.

# Aufgabe 1

Es sei X eine gleichverteilte Zufallsvariable mit Wertebereich  $X(\Omega) = \{-2, -1, 0, 1, 2\}$  und  $Y = X^2$ .

- (a) Bestimme die Kovarianz von X und Y.
- (b) Sind X und Y unabhängig?

## Aufgabe 2

Es sei X eine Zufallsvariable mit Dichte  $f: \mathbb{R} \to [0, \infty), f(x) = 2^{-1}e^{-|x|}, x \in \mathbb{R}$ , sowie  $A = \{x \in \mathbb{R} : |x - \mathbb{E}[X]| \ge 2\sqrt{\mathsf{Var}(X)}\}.$ 

- (a) Bestimme  $P(X \in A)$ .
- (b) Vergleiche das Ergebnis aus (a) mit der Abschätzung die sich aus der Ungleichung von Tschebyscheff ergibt.

# Aufgabe 3

Sei (X,Y) ein Zufallsvektor mit Dichte  $f_c: \mathbb{R}^2 \to [0,\infty)$  gegeben durch

$$f_c(x,y) = ce^{-(x+y)} \mathbb{1}_{\Delta}(x,y), \quad (x,y) \in \mathbb{R}^2,$$

wobei c eine positive Konstante ist und  $\Delta = \{(x,y) \in [0,\infty)^2 : x+y \leq 1\}.$ 

- (a) Zeige, dass c = e/(e-2) gilt.
- (b) Bestimme die Randdichten von X und Y.
- (c) Bestimme Cov(X,Y). Entscheide, ob X und Y unabhängig sind
- (d) Gib den Erwartungswertvektor und die Kovarianzmatrix von (X,Y) an.

#### Aufgabe 4

Es seien X und Y Zufallsvariablen mit  $0 < \mathbb{E}[X^2], \mathbb{E}[Y^2] < \infty$  und  $\mathbb{E}[X] = \mathbb{E}[Y] = 0$ .

- (a) Für welchen Wert von  $a \in \mathbb{R}$  wird  $\mathbb{E}[(X aY)^2]$  minimal?
- (b) Es bezeichne  $\rho(X,Y)$  den Korrelationskoeffizienten von X und Y. Für welche Werte von  $\rho(X,Y)$  gilt  $\mathbb{P}(X=aY)=1$ ?

<sup>&</sup>lt;sup>1</sup>Hinweis:  $\mathbb{P}(X = aY) = 1 \iff \mathbb{E}[(X - aY)^2] = 0$ .

- (c) Zeige, dass die Zufallsvariablen X-Y und X+Y genau dann unkorreliert sind, wenn  $\mathbb{E}[X^2] = \mathbb{E}[Y^2]$ .
- (d) Gib ein Beispiel für X und Y so, dass  $\mathbb{E}[X^2] = \mathbb{E}[Y^2]$  aber X Y und X + Y nicht unabhängig sind

## Aufgabe 5

Die Messung der Körpergrößen von 200 nach der Geburt zufällig ausgewählten Säuglingen ergab einen Durchschnittswert von 49.35cm (=  $\bar{x}_{200}$ ). Wir fassen die Daten als Beobachtung  $(x_1, \ldots, x_{200})$  einer i.i.d. Zufallsstichprobe  $(X_1, \ldots, X_{200})$  auf.

- (a) Nimm an, dass  $X_1 \sim N(\mu, \sigma^2)$ , wobei  $\mu = 48.8$ cm und  $\sigma^2 = 5.3$ cm<sup>2</sup>. Bestimme  $P(\bar{X}_{200} > \bar{x}_{200})$ .
- (b) Nimm nun an, dass  $X_1$  exponentialverteilt ist mit Erwartungswert 48.8cm. Bestimme mit Hilfe des zentralen Grenzwertsatzes einen Näherungswert für  $P(\bar{X}_{200} > \bar{x}_{200})$ .

#### Aufgabe 6

An Kasse 1 des Supermarktes REWEKA sei die Wartezeit eines Kunden (in Minuten) beschrieben durch eine Zufallsvariable  $X \sim \mathsf{Exp}(\lambda)$ , wobei der Parameter  $\lambda > 0$  unbekannt sei. REWEKA vermutet, dass  $\lambda = 1/3$  ist. Die Vermutung soll überprüft werden. Nimm dazu im Folgenden an, dass sie richtig ist.

- (a) Die Auswertung einer Stichprobe der Wartezeiten von 10 Kunden ergab, dass 4 Kunden länger als 3 Minuten warten mussten. Bestimme die Wahrscheinlichkeit dafür unter der Annahme, dass die Wartezeiten aller Kunden unabhängig voneinander sind.
- (b) Im zweiten Schritt wurden die Wartezeiten von 150 Kunden an Kasse 1 gemessen. Dabei ergab sich, dass die *Summe* aller Wartezeiten der beobachteten Personen mehr als 550 Minuten betrug. Berechne unter der Vermutung **approximativ**<sup>2</sup> die Wahrscheinlichkeit für dieses Ereignis, falls angenommen wird, dass die Wartezeiten aller Kunden unabhängig voneinander sind.

 $<sup>^2 \</sup>mbox{Verwende}$ den zentralen Grenzwertsatz.