Stochastic Simulations
SoSe 2017
28. April 2017

Universität Ulm

Dr. Kirsten Schorning
Dr. Vitalii Makogin

Exercise sheet 1

till May 5, 2017
Please email your code to vitalii.makogin@uni-ulm.de

Theory (total - 13 points)

Exercise 1-1 (1+1+1 points)

Write down the transition matrices of the Markov chains, given by transition graphs:
a)

b)

Exercise 1-2 (1+1+1+1 points)

Draw the transition graphs of of the Markov chains, given by transition matrices:
(a) $\left(\begin{array}{cccc}p_{1} & p_{2} & p_{3} & \ldots \\ 1 & 0 & 0 & \ldots \\ 1 & 0 & 0 & \ldots \\ & \cdots & & \end{array}\right)$;
(b) $\left(\begin{array}{ccccc}p_{1} & p_{2} & p_{3} & p_{4} & \ldots \\ 0 & 1 & 0 & 0 & \ldots \\ 0 & 0 & 1 & 0 & \ldots \\ 0 & 0 & 0 & 1 & \ldots\end{array}\right)$;
$(c)\left(\begin{array}{cccc}p_{1} & p_{2} & p_{3} & \ldots \\ 1 & 0 & 0 & \ldots \\ 0 & 1 & 0 & \ldots \\ 0 & 0 & 1 & \ldots \\ & \cdots & & \end{array}\right)$;
(d) $\left(\begin{array}{ccccc}\left(1-p_{1}\right) & p_{1} & 0 & 0 & \ldots \\ \left(1-p_{2}\right) & 0 & p_{2} & 0 & \ldots \\ \left(1-p_{3}\right) & 0 & 0 & p_{3} & \ldots\end{array}\right)$.

Exercise 1-3 (1+2+2+1 points)

The transition matrix of a Markov chain $\left\{X_{n}, n \geq 0\right\}$ is

$$
P=\left(\begin{array}{lll}
0.1 & 0.2 & 0.7 \\
0.3 & 0.4 & 0.3 \\
0.5 & 0.4 & 0.1
\end{array}\right)
$$

The initial distribution is: $\mathbf{P}\left(X_{0}=0\right)=0.6, \mathbf{P}\left(X_{0}=1\right)=0.3, \mathbf{P}\left(X_{0}=2\right)=0.1$.
(1) Find the distribution of X_{1}.
(2) Find the probabilities $\mathbf{P}\left(X_{2}=0\right), \mathbf{P}\left(X_{1}=0, X_{2}=1, X_{3}=2 \mid X_{0}=0\right)$,
$\mathbf{P}\left(X_{1}=0, X_{3}=0, X_{4}=2 \mid X_{0}=1\right), \mathbf{P}\left(X_{1}=0, X_{3}=0, X_{4}=0, X_{6}=0, X_{8}=0 \mid X_{0}=0\right)$.
(3) Find the probabilities $\mathbf{P}\left(X_{0}=0, X_{1}=1\right)$,
$\mathbf{P}\left(X_{1}=0, X_{2}=1\right), \mathbf{P}\left(X_{4}=0, X_{3}=1, X_{1}=0, X_{2}=2, X_{5}=0 \mid X_{0}=1\right)$.
(4) Find the distribution of the random variable $\tau_{1}=\inf \left\{n \geq 0 \mid X_{n} \neq 0\right\}$.

Programming (total - 8 points)

Exercise 1-4 (4 points)

Let r.v. Y has the cumulative distribution function F and r.v. $X \sim U[0,1]$. Prove that $F^{-1}(X) \stackrel{d}{=} Y$. Using this fact, write the R program to simulate random variables with the following distributions.

1. Gaussian with $\mu=1, \sigma^{2}=1$,
2. Poisson(1),
3. $\operatorname{Exp}(1)$.

Simulate the samples of size $N=1000$. Compare them with samples generated by standard R functions rnorm, rpois, rexp.

Exercise 1-5 (2+2 points)

A flea lives in a house with four dogs. Every day, it either stays where it is (with probability 0.7) or jumps (with probability 0.3) to one of the other dogs (selected uniformly).
(a) Write a R program to simulate this Markov chain using the initial distribution $\boldsymbol{\mu}_{\mathbf{0}}=\boldsymbol{\delta}_{\mathbf{1}}$. Run your simulation for $n=365$ days and plot a histogram of the visited states.
(b) Calculate the distribution of the flea's position after 5, 10 and 365 days. Use the initial distribution from a).

