Stochastic Simulations

SoSe 2017
26. Mai 2017

Universität Ulm

Dr. Kirsten Schorning
Dr. Vitalii Makogin
till June 2, 2017

Exercise sheet 5

Theory (total - 9 points)

Exercise 5-1 (2 points)

Prove that if $U \sim \mathcal{U}(0,1)$ and $n \in \mathbb{N}$, then $\lceil n \cdot U\rceil$ and $\lfloor n \cdot U\rfloor$ have (discrete) uniform distribution on $\{1, \ldots, n\}$ and $\{0, \ldots, n-1\}$, respectively.

Exercise 5-2 (4 points)

The acceptance-rejection algorithm introduced in the lecture works analogously for absolutely continuous distributions. Suppose we have a density f we want to sample from and a density g we can easily sample from and there is a constant $C>0$ such that $C g(x) \geq f(x) \forall x \in \mathbb{R}$. Then we can draw from f as follows:

- Draw X according to g and $U \sim \mathcal{U}(0,1)$ (independently).
- Accept X if $U \leq \frac{f(X)}{C g(X)}$, reject otherwise.

Show that this approach leads to the desired result, i.e., show that

$$
P\left(X \leq x \left\lvert\, U \leq \frac{f(X)}{C g(X)}\right.\right)=F(x)
$$

where F is the cumulative distribution function of f.
Hint: Use the continuous version of the law of total probability, i.e., if X is an absolutely continuous random variable with density f, then

$$
\mathbf{P}(A)=\int_{\mathbb{R}} \mathbf{P}(A \mid X=x) f(x) \mathrm{d} x
$$

Exercise 5-3 (3 points)

A random variable with density $g(y)=\sqrt{2 / \pi} e^{-y^{2} / 2} \mathbb{I}\{y \geq 0\}$ is to be simulated by rejection sampling. The candidate values are realizations from a $\operatorname{Exp}(\lambda)$-distributed random variable with density $f(x)=\lambda e^{-\lambda x} \mathbb{I}\{x \geq 0\}$.
(a) Determine the smallest value c (with subject to $\lambda>0$) such that $c f(y) \geq g(y)$.
(b) For which value of λ is the theoretical percentage of rejected samples minimal?

Programming (total - 11 points)

Exercise 5-4 (4 points)

Under the conditions Exercise $5-3$, for $\lambda=1$ write a R program to generate pseudorandom numbers according to the stated setup. Determine the theoretical percentage of rejected values and compare it to the empirical result for $n=1000$ iterations.

Exercise 5-5 (4 points)

For each of the following densities, write down an algorithm based on the acceptancerejection method to generate pseudorandom numbers according to each of the given distributions - call it G (with probability function $q=\left(q_{1}, \ldots, q_{100}\right)$ and density $g(y)$ respectively). Assume that the only available random number generator produces $U(0,1)$-pseudo random numbers.
(a) $q_{j}=a / j, j=1, \ldots, 100$ with $a=\left(\sum_{j=1}^{100} q_{j}\right)^{-1}$,
(b) $g(y)=\left(\frac{1}{10} y^{2}+\frac{7}{15}\right) \mathbb{I}\{y \in(-1,1)\}$.

Hint: With regard to part (b): The auxiliary distribution F, from which candidates for the realizations of G are drawn, should be simple to generate, but not too far-off from the desired distribution.

Exercise 5-6 (3 points)

Write a R program to simulate random variable with the following distribution using the inversion method.
(a) Hypergeometric (m, n, k)
(b) Probability function is $q=\left(q_{1}, \ldots, q_{50}\right)$, where $q_{j}=a / j^{2}, j=1, \ldots, 50$ with $a=$ $\left(\sum_{j=1}^{50} q_{j}\right)^{-1}$,

