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Introduction

Generally speaking, the field of spatial statistics deals with the statistical inference of random
objects that are embedded into the Euclidean space Rd such as random closed sets, mosaics,
geometric point processes and graphs, shapes, fields etc. Here, the space Rd can as well be
understood as a space-time continuum if we separate some dimension of Rd to be a time line.

Modern spatial statistics is a huge area which can not be covered in one lecture course. The
field’s practical applications range from engineering to medicine and social sciences, and are too
numerous to mention them all. To give a feeling of how powerful its methods can be, consider
just two specific subareas of spatial statistics:
First, the subarea concerned with random sections of random closed sets is called stereology

with main applications in medicine and biology, in particular pathology analysis. The second
subarea, which deals by applications in geosciences, is named geostatistics. Here, the main
objects of study are random surfaces, which might be evolving in time. We refer to these surfaces
as random fields. These fields may model gas, ore, crude oil or coal deposits in geology, rough
surfaces of metals or composites in materials science, regression forecast surfaces in climate
research and environmental contexts as well as in georeferenced economics and insurance.

The latter area, dealing with statistical inference of random fields, is the subject of these
lecture notes. It will include the estimation of the mean, covariance, spectral density, variogram
as well as various prediction methods for (space-time-)random surfaces. In the context of
prediction, we will review different regression, Kriging and metric projection-type methods.
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1 Basics of random fields

We start with a short overview of the basic notions of the theory of random fields. Let BRd
denote the Borel σ-algebra of subsets of Rd, d ≥ 1. We equip the Euclidean space Rd with a
norm ‖ · ‖, e.g. the Euclidean norm ‖x‖2 =

√
〈x, x〉, x ∈ R2, where 〈·, ·〉 is the scalar product

in R2. Denote by R+ the set of non-negative real numbers, i.e. R+ = [0,∞). Furthermore, let
(Ω,F ,P) be an arbitrary probability space.
Definition 1.1 A random field X = {X(t), t ∈ T} is a random function on (Ω,F ,P) indexed
by the elements of some subset T ⊂ Rd, where d ≥ 1 is an arbitrary integer, i.e. X is a
measurable mapping X : Ω × Rd → R. That is, for all Borel sets B ∈ BR it holds that
X−1(t)(B) = {ω ∈ Ω : X(t) ∈ B} ∈ F for all t ∈ T .
For an introduction into the theory of random fields see lecture notes “Random Fields“ [43].

1.1 Random Fields with invariance properties
Definition 1.2 A random field X = {X(t), t ∈ T} whose finite-dimensional distributions are
invariant with respect to the action of a group G of transformations of T is called G-invariant
in the strict sense. That is, for all t1, . . . , tn ∈ T, n ∈ N, and g ∈ G it holds that

(X(gt1), . . . , X(gtn)) d= (X(t1), . . . , X(tn)),

where d= denotes equality in distribution and gt = g(t) for all t ∈ T .
In case the invariance is given only for the first two moments of the field, which are assumed

to be finite, we speak of G-invariance in wide sense.
Definition 1.3 A random field X = {X(t), t ∈ T} is G-invariant in wide sense if it is square-
integrable, i.e. E[X2(t)] <∞ for all t ∈ T , and the mean value function µ(t) := E[X(t)], t ∈ T ,
as well as the covariance function C(s, t) := cov(X(s), X(t)) s, t ∈ T , satisfy

µ(gt) = µ(t) and C(gs, gt) = C(s, t)

for all s, t ∈ T and g ∈ G.
It is easy to see that any random field X which is G-invariant in strict sense, is also G-

invariant in wide sense provided that E[X2(t)] <∞ for all t ∈ T .
Remark 1.4 Let G be

(a) the group of translation of T , i.e., g(t) = t + hg for some translation vector hg ∈ Rd.
Then, the G-invariant random field X is called stationary (in the respective sense).

(b) the group of rotations of T , SOd. Then, the G-invariant random field X is called isotropic
(in the respective sense).
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1 Basics of random fields 3

(c) the group of all rigid motions of T . Then, the G-invariant random field X is called motion
invariant (in the respective sense). This is equivalent to X being stationary and isotropic.

If X is square integrable, then properties (a)-(c) imply

(a) µ(t) ≡ const, C(s, t) = C0(s− t), s, t ∈ T , where C0 : Rd → R is a covariance function,

(b) µ(t) = µ(‖t‖), C(s, t) = C(‖s‖, ‖t‖), s, t ∈ T , where ‖ · ‖ is a norm in Rd,

(c) µ(t) ≡ const, C(s, t) = C1(‖s− t‖), s, t ∈ T , where C1 : R+ → R is a covariance function.

The same notions of G-invariance can be applied to the increments Xh = {Xh(t) := X(t +
h) −X(t), t ∈ T}, h ∈ T , of a random field X. In this case, the stationary property is called
intrinsic. The intrinsic stationarity in the wide sense is called intrinsic stationarity of order
two. It holds that

E [Xh(t)] ≡ f(h) and E
[
X2
h(t)

]
= 2γ(h)

do not depend on t ∈ T . The function γ is called the variogram. It is defined by

γ(h) := 1
2E
[
(X(t+ h)−X(t))2

]
for all h ∈ T .
Exercise 1.5 Show that the mean value function (if it exists) of any process (d = 1) with
stationary increments is a linear function, i.e., EX(t) = at + c for all t ∈ R, where a ∈ R and
c ∈ R are some constants.
Lastly, we say that a random field X = {X(t), t ∈ T} is centered if its mean value function

µ(t) exists and µ(t) ≡ 0 for all t ∈ T .

1.2 Elements of correlation theory
Let X = {X(t), t ∈ T}, T ⊂ Rd be a square-integrable random field which is wide-sense
stationary with covariance function C(s− t) = cov(X(s), X(t)), s, t ∈ T . Then, the covariance
function C is positive semi-definite, which is a consequence of the following result.
Proposition 1.6 A functionG : Rd×Rd → R is a covariance function of some square-integrable
random field if and only if it is positive semi-definite.
Exercise 1.7 Prove Proposition 1.6.
Hint: Calculate the variance of the linear combination

∑n
i=1 xiX(ti) for arbitrary n ∈ N, ti ∈

Rd, xi ∈ R.
An important aspect of correlation theory is the so-called spectral representation of X. By

the Bochner-Kchinchin theorem, see lecture notes “Random Fields“ [43, Theorem 2.1.1], any
positive semi-definite function f : Rd → R, which is continuous at the origin, is a Fourier
transform of some symmetric finite measure µf on Rd. Thus, for a wide-sense stationary and
mean-square continuous field X we have

cov(X(s)), X(t)) = C(s− t) =
∫
Rd
ei〈x,s−t〉µC(dx).
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Here, 〈·, ·〉 denotes the Euclidean scalar product in Rd. The finite measure µC on BRd is called
a spectral measure of X. If µC is absolutely continuous with respect to the Lebesque measure,
then its density fC is called a spectral density, i.e. µC(dx) = fC(x)dx.
It holds that the spectral density fC : Rd → R+ is integrable on Rd, since∫

Rd
fC(x)dx =

∫
Rd
µC(dx) = C(0) = var(X(t)) <∞.

Together with the covariance function C, the spectral density measures the stochastic depen-
dence between X(s) and X(t) for s, t ∈ T . In particular, the behaviour of fC at the origin
0 ∈ Rd (e.g. whether fC(0) <∞ or fC(x) ↑ ∞, x→ 0) can tell whether the field X has short
memory, i.e. ∫

Rd
|C(x)|dx <∞

or long memory, i.e. ∫
Rd
|C(x)|dx =∞.

Sometimes, the terms short and long range dependence are used, instead.

1.3 Examples of random fields

1.3.1 Boolean random fields

Let {Xl(t), t ∈ Rd}l∈R be a family of stochastically independent, a.s. continuous random
functions with subgraphs having a.s. compact sections. Furthermore, let Π = {(Yi, Ti)}∞i=1 be
a Poisson point process in Rd×R with intensity measure vd⊗θ, where vd denotes the Lebesgue
measure on Rd and θ is a σ-finite measure on R. The random function X = {X(t), t ∈ Rd}
with

X(t) = sup
(Yk,Tk)∈Π

XTk(t− Yk), t ∈ Rd,

is called a Boolean random field. The functionsXl are referred to as primary functions. Boolean
random fields are often used for modeling purposes in geo- and materials science.

Fig. 1.1: X(t) at “simulation time“ step T4.
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Fig. 1.2: Examples of realizations of a Boolean random function with cone primary functions
(left) and built from Poisson lines (right) [38, p. 149].

1.3.2 Gaussian random fields
A widely known and one of the most important class of random fields is the class of Gaussian
fields.
Definition 1.8 A random field X = {X(t), t ∈ Rd} is called Gaussian if its finite-dimensional
distributions are Gaussian.
The popularity of Gaussian fields for modeling purposes in applications can be explained

mainly by the simplicity of their construction and analytic tractability combined with the
normal distributions of marginals, which describe many real phenomena due to the central
limit theorem.
By Kolmogorov’s theorem, the probability law (or distribution) of a Gaussian random field

is uniquely defined by its mean value and covariance function, see lecture “Random fields“ [43,
Theorem 1.1.2.].
Exercise 1.9 Show that for Gaussian random fields stationarity (isotropy, motion invariance)
in the strict sense and stationarity (isotropy, motion invariance) in the wide sense are equivalent.
In this case we call a Gaussian field just stationary (isotropic, motion invariant)

In the following, consider two particular cases of Gaussian random fields:

(a) An Ornstein-Uhlenbeck random field is a centered, i.e. E[X(t)] = 0 for all t ∈ R, Gaussian
random field X = {X(t), t ∈ R} with covariance function

E [X(s)X(t)] = exp {−|s− t|/2} , s, t ∈ Rd.

It is clearly stationary and isotropic, hence motion invariant.

(b) A fractional Brownian field X = {X(t), t ∈ Rd} is a centered Gaussian field with covari-
ance function

E [X(s)X(t)] = 1
2‖s‖

2H + ‖t‖2H − ‖s− t‖2H , s, t ∈ Rd,
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Fig. 1.3: Fractional Brownian fields with different roughness parameter H [38, p.398].

for some H ∈ (0, 1], where ‖ · ‖ is the Euclidean norm in Rd. The process is often denoted
by XH to emphasize its dependence on H.
The parameter H, often referred to as Hurst index, is responsible for the regularity of the
paths of X, i.e. the greater H the smoother the paths of X. In the one-dimensional case
the process X is called the fractional Brownian motion, including the two-sided Wiener
process (defined on the whole real line R) where H = 1

2 . In the case d > 1, X is called
the Brownian Lévy field if H = 1

2 .
It is easy to check that X is intrinsically stationary of order two and isotropic. Its
variogram γ(h) = 1

2 · ‖h‖
2H is clearly motion invariant. However, this field is not wide-

sense stationary as its variance is not constant.

Exercise 1.10 Show that a fractional Brownian field X
(a) has stationary increments, which are positively correlated for H ∈ (1

2 , 1) and nega-
tively correlated for H ∈ (0, 1

2),

(b) is H-self-similar, i.e. X(λt) d= |λ|HX(t) for all λ ∈ R and t ∈ Rd,
(c) has a version with a.s. Hölder-continuous paths of any order β ∈ (0, H),
(d) has nowhere differentiable paths for any H ∈ (0, 1),

(e) is a linear process for d = H = 1, i.e. X(t) d= tZ, for all t ∈ R and some random
variable Z ∼ N(0, 1).

1.3.3 Max-stable random fields

Max-stable random fields are used to model extremal events such as highest floods, maximal
temperature and precipitation, etc.
Definition 1.11 A random field X = {X(t), t ∈ T} is called max-stable if for any n ∈ N there
exist constants αn > 0, βn ∈ R such that

X
d=


max

j=1,...,n
Xj(t)− βn

αn
, t ∈ T

 ,
where {Xj(t), t ∈ T} are i.i.d. copies of X. In particular, if T = {t0}, t0 ∈ Rd, then X is
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called a max-stable random variable. On the other hand, if T = {t1, . . . , tn} ⊂ Rd , then X is
a max-stable random vector.

By the theorem of Fisher-Tippett-Gnedenko [7] any max-stable random variable (and hence
any marginal distribution of a max-stable random field X) has one of the three possible extreme
value distributions: Weibull, Gumbel or Fréchet.
Among these distributions, only the Fréchet distribution does not have a finite variance. We

say that a random variable Y is Fréchet-distributed is its cumulative distribution function is
given by

P(Y ≤ x) = exp
{
−
(
x− µ
σ

)−α}
, x > µ.

We use the notation Y ∼ Fréchet(α, µ, σ), and for Fréchet(α, 0, 1) = Fréchet(α). Fréchet(1) is
called standard Fréchet distribution.

Exercise 1.12 Show that for Y1 ∼ Fréchet(α) it holds that E|[Y1|] < ∞ if and only if α > 1.
Moreover, E[|Y1|k] < ∞ holds if and only if α > k, k ∈ N. For α > 1, check that E[Y1] =
Γ(1− 1

α).
Every max-stable random field X can be suitably transformed via a transform Ψ such

that the marginals of Ψ(X) have either Weibull, Fréchet or Gumbel distribution. A suit-
able transformation of X(t) can be chosen as follows. For the cumulative distribution function
FX(t) = P(X(t) ≤ x), x ∈ R, define

Ψ(x) = − 1
logFX(t)(x) , x ∈ R.

Then, it is not difficult to see that Y (t) = Ψ(X(t)) ∼ Fréchet(1). Consequently, it is sufficient
to consider random fields with marginals standardized to Fréchet(1).
Exercise 1.13 Prove the above.

The stochastic dependence in max-stable random vectors is described by the so-called tail
dependence function. Consider the (n− 1)-dimensional unit simplex

Sn = {(x1, ..., xn) = x ∈ Rn+ :
n∑
j=1

xj = 1}

for n ≥ 2. The tail dependence function ln is introduced in the following result.
Theorem 1.14 Let Y = (Y1, ..., Yn) be a max-stable random vector. The following are equiv-
alent.

(a) Yj ∼ Fréchet(α) for some α > 0, j = 1, . . . , n.

(b) There exists a function ln : R+ → R+ such that

P (Y1 ≤ x1, . . . , Yn ≤ xn) = exp
{
−ln(x−α1 , . . . , x−αn )

}
, x1, . . . , xn > 0.

where
ln(x1, . . . , xn) =

∫
Sn

max
j=1,...,n

{xjqj} dµ(q1, . . . , qn).
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The finite measure µ on Sn satisfies the constraint∫
Sn
qj dµ(q1, . . . , qn) = 1, j = 1, . . . , n,

see [34] for a proof. The function ln is called tail dependence function of the vector Y .

Theorem 1.15 The tail dependence function ln

(a) is convex,

(b) is homogeneous of order 1 , i.e. ln(λx1, . . . , λxn) = λ · ln(x1, . . . , xn) for all λ > 0 and
x1, . . . , xn > 0,

(c) satisfies

‖x‖max ≤ ln(x1, . . . , xn) ≤
n∑
j=1

xj = ‖x‖1

for all vectors x = (x1, . . . , xn) ∈ Rn, where ‖x‖max = maxj=1...n |xj | is the maximum
norm of x and ‖x‖1 =

∑n
j=1 |xj | the l1-norm.

Exercise 1.16 Prove Theorem 1.15.
Exercise 1.17 Let ln be the tail-dependence function of a max-stable random vector Y =
(Y1, . . . , Yn). Show:

(a) ln(x) = ‖x‖max if and only if Y1 = · · · = Yn a.s., i.e. complete dependence holds.

(b) ln(x) = ‖x‖1 if and only if Y1, . . . , Yn are stochastically independent.

Recall that the Fréchet distribution has infinite variance. For n = 2, the quantity θ = l2(1, 1)
is called (pairwise) extremal coefficient. It serves as an analogue to the covariance for heavy-
tailed random variables Y1, Y2 ∼ Fréchet.
Example 1.18 Let us now give some examples of max-stable random fields.

(i) The Brown-Resnick random field is defined as follows. Let Y = {Y (t), t ∈ T} be a
centered Gaussian random field with stationary increments and σ2(t) := var(Y (t)), t ∈ T .
Let Π = {ζj} be a Poisson process on R, independent of Y , with intensity measure
∆(dx) = e−xdx. Then, the Brown-Resnick random field is given by

R(t) := max
j∈N

{
ζj + Yj(t)−

σ2(t)
2

}
, t ∈ T,

where ρj = {Yj(t), t ∈ T} are independent copies of Y . It is stationary and has standard
Gumbel margins P(R(t) ≤ x) = exp(−e−x), x ∈ R.

Exercise 1.19 Show that the transformation B(t) := eR(t) has Fréchet(1) margins.

The finite-dimensional distributions of {R(t), t ∈ T} as well as the tail dependence
function ln are given in the following.

Theorem 1.20 For any t1, . . . , tn ∈ T it holds that
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(a) P(R(T1) ≤ y1, . . . R(tn) ≤ yn) = exp
{
−E

[
exp

{
max

j=1,...,n
(Y (tj)− σ2(tj

2 − Yj)
}]}

.

(b) the tail dependence function ln of (B(t1), . . . , B(tn)) is given by

ln(x1, . . . , xn) =
∫ +∞

0

[
1− FΣn

(
log

(
y

x1

)
+ σ2(t1)

2 , . . . , log
(
y

xn

)
+ σ2(tn)

2

)]
dy,

where Σn is the covariance matrix of (Y (t1), . . . , Y (tn)), x1, . . . , xn > 0, and FΣn is
the multivariate cumulative distribution function of N(0,Σn).

(ii) The Smith random field S = {S(t), t ∈ T} is defined by

S(t) := max
j∈N
{ζjfΣ(t− εj)} , t ∈ T ⊂ Rd,

where Σ is a positive definite matrix with dimensions d× d, fΣ is the probability density
function of N(0,Σ) and Π̃ = {(ζj , εj)}j∈N is a Poisson point process on (0,∞)×Rd with
intensity measure Λ̃(dx, dy) = x−2dxdy.
Similarly to Theorem 1.20, we may formulate:

Theorem 1.21 For any t1, . . . , tn ∈ T it holds that
(a) S(tj) ∼ Fréchet(1),

(b) P(S(t1) ≤ y1, . . . , S(tn) ≤ yn) = exp
{
−
∫
Rd max

j=1,...,n
fΣ(tj−s)

yj
ds

}
, y1, . . . , yn > 0,

(c) the tail dependence function ln of (S(t1), . . . , S(tn)) is given by

ln(x1, . . . , xn) =
∫
Rd

max
j=1,...,n

{xjfΣ(tj − s)} ds.

(iii) The extremal Gaussian random field G = {G(t), t ∈ T} is given by

G(t) := max
j∈N

ζj(max{Yj(t), 0}), t ∈ T ⊂ Rd,

where {Yj(t), t ∈ T} are independent copies of a stationary centered Gaussian random
field Y = {Y (t), t ∈ T}, and ˜̃Π = {ζj}j∈N is an independent Poisson process on R+ with
intensity measure ˜̃Λ(dx) =

√
2πx−2dx.

Theorem 1.22 For any t1, . . . , tn ∈ T it holds that
a) G(tj) ∼ Fréchet(1),

b) P(G(t1) ≤ y1, . . . , G(tn) ≤ yn) = exp
{
−E

[
maxj=1,...,n

fΣ(tj−s)
yj

]}
, y1, . . . , yn > 0,

c) the tail dependence function ln of (G(t1), . . . , G(tn)) is given by

ln(x1, . . . , xn) =
∫ ∞

0

[
1− Fσn

(
y

x1
, . . . ,

y

xn

)]
dy, x1, . . . , xn > 0,

where Fσn is chosen as in Theorem 1.20.

Exercise 1.23 Show that for n = 2, the tail dependence function in Theorem 1.22 (c)
simplifies to

l2(x1, x2) = 1
2

(
x1 + x2 +

√
x2

1 − ρx1x2 + x2
2

)
,

where ρ = corr(Y (t1), Y (t2)).
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Fig. 1.4: Simulated realizations of Brown-Resnick, Smith and extremal Gaussian random fields
in d = 2 [9].
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1.3.4 α-stable random fields
The class of α-stable random fields models heavy-tailed phenomena, where the variance (and
possibly even the mean) is infinite. Such events are common in insurance and finance, where
high volatility and dangerous risks in extreme scenarios are common. First, we introduce
α-stable random vectors.
Definition 1.24 A random vector Y = (Y1, . . . , Yn) : Ω 7→ Rn is called stable if for all m ≥ 2
there exist c = c(m) > 0, k = k(m) ∈ Rn such that

Y (1) + Y (2) + · · ·+ Y (m) d= cY + k,

where {Y (j)}mj=1 are independent copies of Y .

It can be shown that c = m1/α, where α ∈ (0, 2] is called stability index or index of stability
[37, Theorem 2.1.2].
Exercise 1.25 Show that for k = k(m) from Definition 1.24 it holds that k(m) = µ(m−m1/α),
where µ is the shift parameter of Sα(µ,Γ).
Hint: First, show that

∑m
j=1 Y

(j) ∼ Sα(mµ,mΓ) and m1/αY + k(m) ∼ Sα(m1/αµ+ k(m),mΓ).
An equivalent definition of stable random vectors is given in terms of their characteristic

function.
Definition 1.26 A random vector Y = (Y1, . . . , Yn) : Ω 7→ Rn is called stable if its character-
istic function ϕY (s) = E

[
ei〈Y,s〉

]
, s ∈ Rn, is of the form

ϕY (s) =

exp
{
−
∫
Sn−1 |〈s, x〉|α

(
1− i · sgn(〈s, x〉) tan

(
πα
2
))

Γ(dx) + i〈s, µ〉
}
, α 6= 1,

exp
{
−
∫
Sn−1 |〈s, x〉|

(
1 + i 2

π sgn(〈s, x〉) log |〈s, x〉|
)

Γ(dx) + i〈s, µ〉
}
, α = 1,

where Γ(·) is a finite measure on the unit sphere Sn−1 ⊂ Rn and µ ∈ Rn.
For α ∈ (0, 2) the pair (µ,Γ) yields a unique parametrization of the distribution of a stable

random vector Y. We say Y is α-stable with shift parameter µ and spectral measure Γ and write
Y ∼ Sα(µ,Γ). The spectral measure Γ contains all information about the interdependence of
the coordinates Yj , j = 1, . . . , n.

In the case α = 2, the characteristic function in Definition 1.26 defines a Gaussian random
vector Y with

ϕY (s) = E
[
ei〈s,Y 〉

]
= exp

{
i〈s, µ〉 − 1

2s
TΣs

}
, s ∈ Rn,

with a positive semi-definite (n× n)- covariance matrix Σ = (σjk)nj,k=1, σjk = cov(Yj , Yk) and
µ = E[Y ] ∈ Rn. In the Gaussian case, the spectral measure Γ(·) is not unique, see Exercise
1.27 below.
Exercise 1.27 Consider the measures Γ1,Γ2 on S0 with

Γ1(dx) = δ{1/
√

2,1/
√

2}(dx) + δ{−1/
√

2,−1/
√

2}(dx),

Γ2(dx) = 2δ{1/√2,1/
√

2}(dx).

Show that Γ1,Γ2 yield the same characteristic function of a Gaussian random vector Y =

(Y1, Y2) with mean µ ∈ R2 and covariance matrix Σ =
(

2 2
2 2

)
.
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A random vector Y is called symmetric if Y d= −Y . For symmetric α-stable random vectors,
we will use the notation Y ∼ SαS.
Lemma 1.28 A random vector Y ∼ Sα(µ,Γ) is SαS if and only if µ = 0 and Γ is symmetric
on Sn−1.

The proof of the above lemma is given in [37, Theorem 2.4.3]. For n = 1, Definition 1.24
yields an α-stable random variable Y . We will reparametrize its distribution using 4 parameters
α, σ, β and µ, as seen in the following representation of the characteristic function of Y . For
all s ∈ R we have

ϕY (s) = E
[
eisY

]
=

exp
{
−σα|s|α(1− iβ · sgn(s) tan(πα2 )) + iµs

}
, α 6= 1,

exp
{
−σ |s| (1 + iβ · 2

π sgn(s) log(|s|) + iµs
}
, α = 1.

In the univariate case, we use the notation Y ∼ Sα(σ, β, µ).
Exercise 1.29 Show that the spectral measure Γ of Y ∼ Sα(σ, β, µ) is given by

Γ(dx) = σα

2 (1 + β)δ{1}(dx) + σα

2 (1− β)δ{−1}(ds)

such that
σα = Γ({1}) + Γ({−1}) and β = Γ({1})− Γ({−1})

Γ({1}) + Γ({−1})
Stable distributions are absolutely continuous. However, their densities are not known ex-

plicitly except for the cases α = 1
2 (Lévy distribution), α = 1 (Cauchy distribution), and α = 2

(normal distribution).
Exercise 1.30 Show:

(a) For Y ∼ SαS it holds that Y ∼ Sα(σ, 0, 0) with characteristic function

ϕY (s) = eσ
α|s|α , s ∈ R.

(b) For Y ∼ S2(σ, 0, µ) it holds that Y ∼ N(µ, 2σ2).

Theorem 1.31 Sα is heavy-tailed, i.e. for Y ∼ Sα(σ, β, µ) with α ∈ (0, 2)

P(|Y | > x) ∼ c

xα

as x→∞ holds for some c > 0.
Consequently, we have

E|Y |p =
∫ ∞

0
P(|Y | > x1/p) dx ≤ c1 ·

∫ ∞
0

x−α/p dx

{
<∞, p ∈ (0, α)
=∞, p ≥ α.

In contrast to this, the normal distribution shows the following short tail behavior. For X ∼
N(0, 1) it holds that

P(X < −x) = P(X > x) ∼ 1√
2πx

e−x
2/s

as x→∞ and all moments are therefore finite.
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Fig. 1.5: Realizations of S0.8S- moving averages with different kernels [38, p.344].

Definition 1.32 A non-Gaussian random field X = {X(t), t ∈ T} is called α-stable with
index of stability α ∈ (0, 2) if all its finite-dimensional distributions are α-stable (in the sense
of Definition 1.24).
An important example for an α-stable random field is given by X = {X(t) : t ∈ T} with

X(t) : d=
√
A · Y (t), where A and Y independent with

A ∼ Sα/2((cos(πα/4))2/α, 1, 0)

and Y = {Y (t), t ∈ T} being a centered Gaussian random field with a positive definite covari-
ance function. The random field X is called subgaussian. Its α-stable distribution follows from
Exercise 1.33.
Exercise 1.33 Show that for a stable random variable A as above and Y0 ∼ N(2σ2), with A
and Y0 independent, it holds that X0 :=

√
A · Y0 ∼ Sα(σ, 0, 0).

Hint: Compute the conditional characteristic function E
[
eisX0 | A

]
.

If the underlying Gaussian random field Y of a subgaussian random field X is stationary,
then X is stationary in the strict sense.



2 Elementary statistical inference for
square-integrable random fields

Let X = {X(t), t ∈ T}, T ⊂ Rd be a wide-sense stationary, measurable random field with mean
µ = E[X(0)], covariance function C(t) = cov(X(0), X(t)) and spectral density fC(t), t ∈ T . In
this chapter, we describe some non-parametric statistical inference methods for the estimation
of µ, C and fC . We also analyze their asymptotic properties as the number of observations
grows to infinity.
We assume that one single realisation of X is available and can be observed on an observation

window W ⊂ T , which is assumed to be non-empty bounded Borel subset of Rd. The values
{X(t), t ∈ W} will be called observations of X. Sometimes, we will assume W = {t1, . . . , tn}
to be a finite set. For asymptotic inference, we will consider a sequence of observation windows
{Wn} ⊂ T growing in the Van Hove-sense, i.e.

lim
n→∞

|Wn| =∞ (2.1)

and

lim
n→∞

|∂Wn ⊕Br(0)|
|Wn|

= 0 for any r > 0, (2.2)

where | · | is the volume (d-dimensional Lebesgue measure) in Rd, ∂W is the boundary of
W , Br(0) = {x ∈ Rd : ‖x‖2 ≤ r} is the spherical neighbourhood of the origin with radius
r. Additionally, the ⊕-operation is the so-called Minkowski addition of two sets being their
pointwise sum, i.e. A⊕B = {x+ y : x ∈ A, y ∈ B} for A,B ⊂ Rd.
Requirement (2.1) is understood in the sense that the growth ofWn is unbounded as n→∞,

whereas (2.2) indicates that the boundary ofWn can be neglected in the subsequent asymptotic
analysis.

2.1 Estimation of the mean

We consider the estimator

µ̂n :=
∫
Wn

X(t)G(Wn, t)dt, n ∈ N,

of µ, where G : BRd × T 7→ R+ is a weight functional satisfying G(W, t) = 0, t ∈ T\W , and∫
T
G(W, t)dt = 1 (2.3)

for any bounded Borel window W ∈ BRd .

14
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Example 2.1 (Uniform weights): The simplest weight functional is uniform on W , i.e. G
is given by

G(W, t) = I(t ∈W )
|W |

, t ∈ T.

Then, the estimator µ̂n becomes

µ̂n = 1
|Wn|

∫
Wn

X(t)dt,

which is the well-known sample mean in statistics. Its practical interpretation is based on the
discretization of the integral. If the only observed sample of X at the points t1, . . . , tN ∈ Wn

is (X(t1, ) . . . , X(tN )), then µ̂n ≈ 1
N

∑N
j=1X(tj).

Lemma 2.2 (Unbiasedness): The estimator µ̂n is unbiased, i.e. E[µ̂n] = µ.

Proof Applying Fubini’s theorem as well as the stationarity of X and Equation (2.3) yields

E [µ̂n] = E

∫
Wn

X(t)G(Wn, t)dt

 Fubini=
∫
Wn

E [X(t)]︸ ︷︷ ︸
=µ

G(Wn, t)dt = µ ·
∫
Wn

G(Wn, t)dt

︸ ︷︷ ︸
=1

= µ.

Consider the function Γn(t) :=
∫
T
G(Wn, t)G(Wn, y + t)dy for t ∈ T . Note that Γn(t) = 0 if

t /∈Wn ⊕ W̌n, where Ǩ := −K for any set K.
Lemma 2.3 For any n ∈ N, it holds that

var(µ̂n) =
∫
T
C(t) · Γn(t)dt.

Exercise 2.4 Proof Lemma 2.3.
Next, we examine the asymptotic behaviour of µ̂n. We take a look at its mean-square

consistency and asymptotic normality.
Theorem 2.5 (L2-consistency): For a Van Hove sequence {Wn}n∈N of observation windows,
assume that there exist constants c0, θ > 0 such that

sup
t∈T

G(Wn, t) ≤
c0
|Wn|

, n ∈ N, and lim
n→∞

|Wn| · Γn(t) = θ.

If the covariance function C is integrable over T , i.e.
∫
T |C(t)|dt <∞, then

lim
n→∞

|Wn|var(µ̂n) = θ

∫
T
C(t)dt,

and consequently E
[
|µ̂n − µ|2

]
→ 0 as n→∞.

Proof The unbiasedness of µ̂ in Lemma 2.2 and Lebesgue’s dominated convergence theorem
yield

lim
n→∞

|Wn|var(µ̂) = lim
n→∞

|Wn|
∫
T
C(t)Γn(t)dt =

∫
T
C(t) lim

n→∞
|Wn|Γn(t)︸ ︷︷ ︸

=θ

dt = θ

∫
T
C(t)dt := c1.
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Thus, var(µ̂n) ∼ c1
|Wn| → 0 as n → ∞. The unbiasedness of µ̂n then implies E

[
|µ̂n − µ|2

]
=

var(µ̂n)→ 0 as n→∞.

Under certain mixing and integrability assumptions, the asymptotic normality of µ̂n can be
proven, i.e. √

|Wn| · (µ̂n − µ) d→ N(0, σ2),

where σ2 := θ ·
∫
T
C(t)dt > 0. Let us give an example of such assumptions [20, Theorem 1.7.4],

see also [3, Chapter 3].

(I) Assumptions of Theorem 2.5 hold true.

(II) There exists a constant δ > 0 such that E
[
|X(0)|2+δ

]
<∞.

(III) It holds that σ2 > 0.

(IV) There exist β, ε > 0 such that
α(r) ≤ β · r−d·ε

for ε · δ > 2d and arbitrary r →∞, where α(r) is the so-called α-mixing rate of X .

To give a formal definition of the α-mixing rate we introduce the following quantity.
Definition 2.6 The Rosenblatt dependence rate of two σ-algebras F1,F2 ⊂ F is defined by

α(F1,F2) = sup
A∈F1,B∈F2

|P(A ∩B)− P(A) · P(B)|.

It is a measure of stochastic dependence between F1 and F2. This can be easily seen from
the following lemma.
Lemma 2.7 Let Yj be Fj-measurable random variables and pj > 1, j = 1, 2, such that
E [|Yj |pj ] <∞. Then,

|cov(Y1, Y2)| ≤ 10 · ‖Y1‖p1 · ‖Y1‖p2(α(F1,F2))
1
q ,

where q > 1 satisfies 1
p1

+ 1
p2

+ 1
q = 1 and ‖Yj‖pj = (E[|Yj |pj ])1/pj is the Lpj -norm of Yj .

Proof A proof can be found in [20, Lemma 1.0.2]

Now, for any Borel windowW ∈ BRd introduce FX(W ) = σ({X(t), t ∈W}), i.e. the σ-algebra
generated by the random field X within the observation window W . Finally, the α-mixing rate
α(r) is defined as

α(r) = sup
∆(B1,B2)≥r
B1,B2∈BRd

α(FX(B1),FX(B2)), r > 0,

where the supremum above is taken over all σ-algebras generated by X on observation windows
B1, B2 that have a minimum distance of r to another, see the following for an illustration.

∆(B1, B2) := inf
x∈B1
y∈B2

‖x− y‖2

The mixing conditions (I)-(IV) can be varied in many ways, see e.g. [10].
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2.2 Estimation of the covariance function
The covariance function C(h) of a wide-sense stationary, measurable random fieldX = {X(t)), t ∈
T} observed within a Van-Hove sequence of observation windows {Wn} can be estimated by

Ĉn(h) := 1
|Wn ∩ (Wn − h)|

∫
Wn∩(Wn−h)

X(t)X(t+ h)dt− µ̂2
n, h ∈W,

for any Borel observation window W . Alternatively, one might apply

C̃n(h) := 1
|Wn|

∫
Wn

X(t)X(t+ h)dt− µ̂2
n, h ∈Wn ∪ (Wn ⊕W ),

for which the random field X needs to be observed in a larger area Wn ∪ (Wn ⊕ W ). For
practical calculations based on a finite sample {X(tj), j = 1, . . . , N}, a discretization of Ĉn and
C̃n is given by

C̄N (h) := 1
Nn

N∑
j,k=1:
tj−tk≈h

X(tj)X(tk)− µ̄2
N ,

where Nh := #{(tj , tk), j, k = 1, . . . , N : tj − tk ≈ h} > 0, h ∈W and µ̄N := 1
N

N∑
j=1

X(tj).

Lemma 2.8 (Asymptotic unbiasedness): Under the assumption of Theorem 2.5 both Ĉn(h)
and C̃n(h) are asymptotically unbiased, i.e. it holds that

E
[
Ĉn(h)

]
→ C(h) and E

[
C̃n(h)

]
→ C(h), n→∞.

Proof By the stationarity of X and Fubini’s theorem, we have

E
[
Ĉn(h)

]
:= 1
|Wn ∩ (Wn − h)|

∫
Wn∩(Wn−h)

(
E [X(t) ·X(t+ h)]− µ2

)
︸ ︷︷ ︸

=C(h)

dt+ µ2 − E
[
µ̂2
n

]

= C(h)− var(µ̂n)︸ ︷︷ ︸
→0 by Thm. 2.5

→ C(h)

as n→∞. The proof for C̃n(h) is analogous.

Under some additional mixing and integrability conditions similar to (I)-(IV), one can show
that the estimators Ĉn and C̃n are strongly consistent (uniformly in h ∈W ) and asymptotically
normally distributed [20, chapter 4].
Returning to their computational version C̄N , note that the number Nh may be often very

small or even zero when the sample points {t1, . . . , tn} are not lying on a regular grid withinW ⊂
T . This is for example the case for large lags h, where ‖h‖2 ≈ diam(W) := supx,y∈W ‖x− y‖2.
The estimator C̄N becomes unreliable at such lags h. In addition, C̄N (·) is not positively
semi-definite (contrary to C(·)).
Similarly to Ĉn and C̃n, estimates of the variogram γ(·) for an intrinsically stationary mea-

surable random field X of order two are commonly used in geostatistics. An estimator for γ is
given by

γ̂(h) := 1
2|Wn ∩ (Wn − h)|

∫
Wn∩(Wn−h)

(X(t)−X(t+ h))2 dt, h ∈W,
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and a discretization is given by

γ̄(h) := 1
2Nh

N∑
j,k=1

tj−tk∼h

(X(tj)−X(tk))2 , h ∈W.

Their asymptotic properties are very similar to those of Ĉn and C̄n, respectively, due to the
well-known relation γ(h) = C(0)− C(h) when X is mean-square integrable.

2.3 Spectral density estimation

Let fC be the spectral density of the wide-sense stationary centered random fieldX = {X(t), t ∈
Rd} with covariance function C, i.e.

fC(x) = 1
(2π)d

∫
Rd

e−i〈x,t〉C(t)dt, x ∈ Rd

by means of the Fourier inversion formula, if C is continuous at the origin and
∫
Rd |C(t)|dt <∞.

The so-called periodogram allows us to estimate fC .

Definition 2.9 (a) The periodogram f̂C of X observed within a window Wn is given by

f̂C(h) := 1
(2π)d|Wn|

∣∣∣∣∫
Wn

exp{−i〈t, h〉}X(t)dt
∣∣∣∣2 , h ∈W,

where W and {Wn}∞n=1 are observation windows.

(b) For a random fieldX = {X(t), t ∈ T} observed only by a finite sample (X(t1), . . . , X(tN )),
N ∈ N, the empirical periodogram f̄N is defined by

f̄N (h) := 1
(2π)dN

∣∣∣∣∣∣
N∑
j=1

exp{−i〈tj , h〉}X(tj)

∣∣∣∣∣∣
2

, h ∈W.

Assume that {t1, . . . , tN} = {0, 1, . . . ,M − 1}d · δ, δ > 0, lie on a regular grid with N = M .

Lemma 2.10 If fC ∈ C(T ), i.e. if fC is a continuous function on T , then the estimators f̂C
and f̄N are asymptotically unbiased almost everywhere on W , i.e.

E
[
f̂C(h)

]
→ fC(h), n→∞, and E

[
f̄N (h)

]
→ fC(h), N →∞,

for almost all h ∈W .

Proof (a) It holds that |z|2 = z · z̄ for all z ∈ C, where z̄ is the complex conjugate of z.
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Fubini’s theorem yields

E
[
f̂C(h)

]
= 1

(2π)d|Wn|

∫
Wn

∫
Wn

exp {−i〈t, h〉+ i〈s, h〉}E[X(s)X(t)]︸ ︷︷ ︸
=C(t−s)

dsdt

= 1
(2π)d|Wn|

·
∫
Rd

∫
Rd
e−i〈h,t−s〉C(t− s) · 1(s ∈Wn, t− s︸ ︷︷ ︸

=y
∈Wn ⊕ W̃n)dsdt

t7→y= 1
(2π)d ·

∫
Wn

ds

|Wn|︸ ︷︷ ︸
=1

·
∫
Wn⊕W̃n

e−i〈h,y〉C(y)dy

→ 1
(2π)d ·

∫
Rd
e−i〈h,y〉C(y)dy = fC(h), h ∈ T,

as n → ∞, since Wn ⊕ W̌n → Rd for any Van-Hove-sequence {Wn} and the Fourier
inversion formula holds.

(b) To prove the statement for E[f̄N (h)], consider for simplicity d = 1 and tj = j, j =
0, . . . , N − 1. Then, similar to (a), it holds that

E
[
f̄N (h)

]
= 1

2πN

N−1∑
j,k=0

e−i(tj−tk)h E[X(tj)X(tk)]︸ ︷︷ ︸
C(tj−tk

= 1
2πN

N−1∑
j,k=0

e−i(tj−tk)h ·
∫
R
ei(tj−tk)tfC(t)dt

=
∫
R

1
2πN

∣∣∣∣∣∣
N−1∑
j=0

eij(t−h)

∣∣∣∣∣∣
2

fC(t)dt

=
∫
R
ϕN (t− h)fC(t)dt→fC(h)

as N →∞, where

ϕN (λ) = 1
2πN

∣∣∣∣∣∣
N−1∑
j=0

eiλj

∣∣∣∣∣∣
2

= 1
2πN

∣∣∣∣∣sin(λ2N)
sin(λ2 )

∣∣∣∣∣
2

is the so-called Fejér kernel. The convergence above holds for almost all h ∈ W (with
respect to the Lebesgue measure on R) by the properties of the Fejér kernel.

However, the variance of f̂C or f̄N , respectively, does not vanish with increasing n or N ,
which makes it a bad estimator of fC . Indeed, it holds that var(f̂C(h))→ f2

C(h) as n→∞ [36,
p. 129], since consistency is not given. In order to correct this estimate, we consider smoothed
versions of f̂C and f̄N , which are defined by

f̂∗C(h) :=
∫
Rd
Gm(h− t)f̂C(t)dt, h ∈W,



20 2 Elementary statistical inference for square-integrable random fields

Fig. 2.1: Bartlett’s kernel

and

f̄∗N (h) :=
∫
Rd
Gm(h− t)f̄N (t)dt, t ∈W,

where Gm : Rd → R+ is a square-integrable smoothing kernel, which approximates the Dirac
delta function as m → ∞ and

∫
Rd Gm(t)dt = 1 for all m ∈ N, i.e. Gm(t) → δ0(t), t ∈ T , as

m→∞ and
∫
Rd G

2
m(t)dt <∞ for all m ∈ N.

Remark 2.11 The asymptotic unbiasedness does not hold for f̄N (h) if the sampling locations
t1, . . . , tn are irregularly spaced [8, Section 3.2].
Example 2.12 Let {am}m∈N be a sequence with am →∞ and am

m → 0 as m→∞. For d = 1
consider the following examples for smoothing kernel functions.

(a) Bartlett’s kernel: Gm(t) = am ·B(am · t),

B(λ) = 1
2π ·

(
sin(λ2 )

λ
2

)2

.

(b) Parzen’s kernel: Gm(t) = adm · P (am · t), d ∈ {1, 2, 3},

P (λ) = 3
8π ·

(
sin(λ4 )

λ
4

)4

.

(c) Zhurbenko’s kernel: Gm(t) = am · Z(am · t),

Z(λ) = α+ 1
2α · (1− |λ|α) · 1(|λ| ≤ 1), α(0, 2].
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Fig. 2.2: Parzen’s kernel

Fig. 2.3: Zhurbenko’s kernel
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All of these functions are even and have a pronounced peak (sharp maximum) at λ = 0, see
Figures 2.1 - 2.3. The kernel Z(λ) has compact support [−1, 1], whereas the support of B(λ)
and P (λ) is the whole real line.

As seen above, we may put Gm(t) = adm ·H(am · t) for any d ≥ 1, where H is an even function
H which integrates to 1, i.e.

∫
Rd H(t)dt = 1. For instance, one might choose

H(t) = pd ·
(sin(‖t‖d/4)
‖t‖d/4

)4

with

pd =
(
wd · 4d

∫ ∞
0

sin4(λ)
λs−d

)−1

, d = 2, 3,

where wd ∈ {2π, 4π} is the surface area of the unit sphere Sd−1 in Rd and ‖ ·‖d is the Euclidean
norm in Rd d = 2, 3.

Exercise 2.13 Compute the normalizing constant zd of

H(t) = zd(1− ‖t‖α2 )1(‖t‖2 ≤ 1), α ∈ (0, 2],

for d > 1.

The smoothed periodograms f̂∗C , f̄∗N are asymptotically unbiased as well:

Lemma 2.14 Let Gm(t) = adm · H(am · t), t ∈ T, m ∈ N, where H : Rd → R+ is an even
bounded function with

∫
Rd H(t)dt = 1 and am → ∞ as m → ∞. Under the assumptions of

Lemma 2.10, it holds that

lim
m→∞

lim
n→∞

E
[
f̂∗C(h)

]
= fC(h),

lim
m→∞

lim
N→∞

E
[
f̄∗N (h)

]
= fC(h)

for h ∈W .

Proof We proof the assertion only for f̂∗C . Fubini’s theorem yields

E
[
f̂∗C(h)

]
=
∫
Rd
Gm(h− t) · E

[
f̂C(h)

]
dt→

∫
Rd
Gm(h− t)fC(t)dt, h ∈W,

as n → ∞, where the convergence is a result of Lemma 2.10 and Lebesgue’s dominated con-
vergence theorem. Then,∫

Rd
Gm(h− t)fC(t)dt =

∫
Rd
adm ·H(am(h− t)) · fC(t)dt y=am(t−h)=

∫
Rd
H(−y)︸ ︷︷ ︸
=H(y)

fC(h+ y

am
)dy

→ fC(h) ·
∫
Rd
H(y)dy︸ ︷︷ ︸
=1

= fC(h), h ∈W,

as m→∞.
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In contrast to f̂C(·) and f̄N (·), the variance of the smoothed estimators f̂∗C(·) and f̄∗N (·) tends
to zero as N →∞ for any fixed m ∈ N. Indeed, we have

var
(
f̄∗N (h)

)
= o

(
f2
C(h)
N

∫
Rd
G2
m(t)dt

)
,

see [36, p. 134], and thus f̂∗C and f̄∗N are weakly consistent estimators for the spectral density
fC by means of Chebyshev’s inequality, since for all h ∈W it holds that

P
(∣∣∣f̄∗N (h)− fC(h)

∣∣∣ > ε
)
≤ P

(∣∣∣f̄∗N (h)− E
[
f̄∗N (h)

]∣∣∣ > ε

2

)
+ P

(∣∣∣E [f̄∗N (h)
]
− fC(h)

∣∣∣ > ε

2

)

≤
var

(
f̄∗N (h)

)
ε2/4 → 0,

as am →∞ and the functionH(·) is chosen in a way such that 1
N

∫
Rd G

2
m(t)dt→ 0 asm,N →∞.

In general, it holds that
∫
Rd G

2
m(t)dt → ∞ as m → ∞, hence its convergence to infinity must

be slower than N .
Remark 2.15 (a) The selection ot the bandwidth am is studied in [23, 31, 24].

(b) Asymptotic normality of f̂∗C(·) and f̄∗N (·) can be shown as in [36, Theorem 7, p.118]; see
also [19] and [44].

In the literature, one can find further (parametric and non-parametric) spectral density
estimates such as the Whittle likelihood [53, 12, 32, 48] and Kernel density estimators [8]. See
also [15] and references therein. For a Bayesian approach we refer to [54, 46] and for other
methods see [25, 1, 2, 5, 6, 18, 28, 47, 52].



3 Prediction of stationary random fields

Let X = {X(t), t ∈ T} be a square-integrable and stationary (in a sense to be specified later)
random field, T ⊂ Rd. Assume that the sample {X(tj), j = 1, . . . , N} is observable.

Problem: How can we predict the value of X(t) for t /∈ {t1, . . . , tN} based on this sample?

Denote by Ft1,...,tN = σ({X(tj), j = 1, . . . , n}) the σ-algebra generated by {X(tj), j =
1, . . . , n}. Evidently, the predictor X̂(t) of X(t) has to be Ft1,...,tN -measurable, and also optimal
in some particular sense. A list of desirable properties of X̂(t) is given in the following.

(i) Exactness: X̂(t) = X(t) a.s. if t = tj , j = 1, . . . , N .

(ii) Unbiasedness: E[X̂(t)] = E[X(t)], t ∈ T .

(iii) Continuity: Almost every path realization of X̂(t) is a continuous function in t ∈ T .

(iv) Consistency: X̂(t)→ X(t) as N →∞, where this convergence may be understood in the
a.s., weakly or quadratic-mean sense.

(v) Exactness in distribution: X̂(t) d= X(t), t ∈W .

Later on, several criteria of optimality will be considered. One of the most common ones is

E
[
|X̂(t)−X(t)|p

]
= min

Y ∈Lp(Ω,Ft1,...,tN ,P )
E [|Y −X(t)|p]

for some p ∈ N, e.g. p = 1, 2, where Lp(Ω,Ft1,...,tN , P ) is the space of all Ft1,...,tN -measurable
random variables Y with E[|Y |p] <∞. Let us consider the case p = 2 in more detail.

3.1 L2-optimal prediction as a conditional expectancy
It is well known that

X̂(t) := E [X(t) | Ft1,...,tN ] = argmin
Y ∈Lp(Ω,Ft1,...,tN ,p)

E
[
(X(t)− Y )2

]
, (3.1)

compare [41, Theorem 1.4.7]. It holds that there exists a Borel-measurable function ϕ such
that X̂(t) = ϕ(X(t1), . . . , X(tN )) [41, Lemma 1.4.11]. However, the function ϕ is usually not
explicitly known. In very few cases, it is known to be linear, as for instance in the case of
Gaussian or some α-stable random fields

ϕ(X(t1), . . . , X(tN )) = λ1 ·X(t1) + · · ·+ λN ·X(tN )

Here, the procedure of finding weights λj = λj(t1, . . . , tN , t), j = 1, . . . , N , satisfying (3.1) is
called linear regression.

24
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3.1.1 Linear regression for Gaussian random fields

We consider linear regression in the Gaussian case and begin with N = 1. The goal is to
find E[X(t) | X(t1)], if the stationary random field is Gaussian with the mean E[X(t)] = µ and
covariance function C(t) = cov(X(0), X(t)), which is positive definite. In this case, the random
vector (X(t), X(t1)) has a bivariate normal distribution with probability density function

fX(t),X(t1)(x, y) = 1
2πσ2

√
1− ρ2 exp

{
− 1

2(1− ρ2)σ2

[
(x− µ)2 − 2ρ(x− µ)(y − µ) + (y − µ)2

]}

for x, y ∈ R, where ρ = corr(X(t), X(t1)) ∈ (−1, 1) and σ2 = C(0) = var(0) > 0. The
conditional density fX(t)|X(t1)(x | y) of X(t) given X(t1) = y is equal to

fX(t)|X(t1)(x | y) =
fX(t),X(t1)(x, y)

fX(t1)(y)

= 1√
2πσ2(1− ρ2)

exp
{

−1
2(1− ρ2)σ2

(
(x− µ)2 − 2ρ(x− µ)(y − µ) + (y − µ)2

)
+ 1− ρ2(y − µ)2

2σ(1− ρ2)

}

= 1√
2π(1− ρ2)σ

exp
{
− 1

2σ2(1− ρ2)
(
(x− µ)2 − 2ρ(x− µ)(y − µ) + ρ2(y − µ)2

)}

= 1√
2π(1− ρ2)σ

exp

− 1
2σ2(1− ρ2)

(
x− (µ+ ρ(y − µ)︸ ︷︷ ︸

=:µ(y)

)
)2
 ,

which is equal to the probability density function of a N(µ(y), (1− ρ2)σ2) distributed random
variable. The following equations are well-known. It holds that

E[X(t) | X(t1) = y] =
∫
R
x · fX(t)|X(t1)(x | y)dx = µ(y) = µ+ ρ(y − µ) (3.2)

and
var(X(t) | X(t1) = y) =

∫
R

(x− µ(y))2 · fX(t)|X(t1)(x | y)dx = σ2(1− ρ2). (3.3)

The conditional variance above does not depend on y and represents the minimal variance in
(3.2). Hence, the following lemma holds.

Lemma 3.1 Let X = {X(t), t ∈ T} be a stationary Gaussian random field with mean
E[X(t)] = µ, positive definite covariance function C(t) = cov(X(0), X(t)) and σ2 = C(0) > 0.
Then,

X̂(t) = E[X(t) | X(t1)] = µ+ C(t− t1)
σ2 (X(t1)− µ)

with
E
[
(X̂(t)−X(t))2

]
= σ2 − C2(t− t1)

σ2 .

Proof Follows from (3.2) and (3.3) with ρ = C(t−t1)
σ2 .

Let IN be the (N × N)-dimensional identity matrix. We can now formulate and prove the
following more general result.
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Theorem 3.2 Let X be as in Lemma 3.1. Then,

X̂(t) = E[X(t) | X(t1), . . . , X(tN )] = µ+ Σt,t1,...,tN · Σ
−1
t1,...,tN (3.4)

and
E
[
(X̂(t)−X(t))2

]
= σ2 − Σt,t1,...,tN · Σ

−1
t1,...,tN · Σ

ᵀ
t,t1,...,tN , (3.5)

where Σt,t1,...,tN = (C(t− t1), . . . , C(t− tN )) and Σt1,...,tN = (C(tj − tk))Nj,k=1.

Proof Consider a random variable

Y = X(t)− µ− Σt,t1,...,tN · Σ
−1
t1,...,tN · X̃,

where X̃ = (X(t1)− µ, . . . ,X(tN )− µ)ᵀ. It holds that

E[Y · X̃ᵀ] = E[(X(t)− µ) · X̃ᵀ]︸ ︷︷ ︸
=Σt,t1,...,tN

−Σt,t1,...,tN · Σ
−1
t1,...,tN · E[X̃ · X̃ᵀ]︸ ︷︷ ︸

=Σt1,...,tN

= 0.

Hence, Y and X̃ are uncorrelated, and therefore also stochastically independent, since they are
jointly Gaussian. It follows that

E[Y | (X(t1), . . . , X(tN )]︸ ︷︷ ︸
=X̃+µ(1,...,1)

) = E[Y ] = 0,

and consequently

E[Y | (X(t1), . . . , X(tN ))] = E[X(t)− µ | X(t1), . . . , X(tN )]− Σt,t1,...,tN · Σ
−1
t1,...,tN · X̃.

We can conclude that

E[X(t) | X(t1), . . . , X(tN )] = µ+ Σt,t1,...,tN · Σ
−1
t1,...,tN · X̃,

which proves (3.4).
To show that (3.5) holds, note that Y = X(t) − E[X(t) | X(t1), . . . , X(tN )], and Y and

(X(t1), . . . , X(tN ))ᵀ are stochastically independent. We can compute

var(X(t) | X(t1), . . . , X(tN ))

:= E
[

(X(t)−
=X̂(t)︷ ︸︸ ︷

E[X(t) | X(t1), . . . , X(tN )])2︸ ︷︷ ︸
=Y 2

| X(t1), . . . , X(tN )
]

= E[Y 2 | X(t1), . . . , X(tN )]
= E[Y 2]

= E
[(
X(t)− µ− Σt,t1,...,tN · Σ

−1
t1,...,tN · X̃

)2
]

= E
[
(X(t)− µ)2

]
︸ ︷︷ ︸

=σ2

− 2Σt,t1,...,tNΣ−1
t1,...,tNΣᵀ

t,t1,...,tN + Σt,t1,...,tN Σ−1
t1,...,tN E[X̃X̃ᵀ]︸ ︷︷ ︸

=Σt1,...,tN︸ ︷︷ ︸
=IN

Σ−1
t1,...,tNΣᵀ

t,t1,...,tN

= σ2 − Σt,t1,...,tNΣ−1
t1,...,tNΣᵀ

t,t1,...,tN ,
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which is deterministic. Thus,

E
[
(X̂(t)−X(t))2

]
= E

[
E[Y 2 | X(t1), . . . , X(tN )]

]
= σ2 − Σt,t1,...,tN · Σ

−1
t1,...,tN · Σ

ᵀ
t,t1,...,tN ,

which coincides with (3.5).

Remark 3.3 Lemma 3.1 and Theorem 3.2 hold (with obvious modifications µ 7→ µ(t), C(t−
s) 7→ C(s, t), σ2 7→ C(t, t)) also for non-stationary random fields.
Corollary 3.4 Let X(t1), . . . , X(tN ) be stochastically independent, and X be as in Lemma
3.1. Then,

X̂(t) = µ+ 1
σ2 ·

N∑
j=1

C(t− tj) · (X(tj)− µ), (3.6)

E
[
(X̂(t)−X(t))2

]
= σ2 − 1

σ2 ·
N∑
j=1

C2(t− tj). (3.7)

Proof Use Equations (3.4) and (3.5) with Σt1,...,tN = σ2 · IN .

Notice that Equations (3.6) - (3.7) are a direct generalization of Lemma 3.1.

3.1.2 Linear regression for α-stable random fields
Let X = {X(t), t ∈ T} be a strictly stationary α-stable random field with index of stability
α ∈ (1, 2), so that E[|X(t)|] <∞ for all t ∈ T , which is necessary for conditional expectations
to exist. Assume for simplicity that X(t) is symmetric α-stable (write X(t) ∼ SαS), i.e.

ϕX(t)(s) = E[eisX(t)] = e−σ
α|s|α , s ∈ R.

Note that X is centered, i.e. E[X(t)] ≡ 0 for all t ∈ T .

Problem: When does

E[X(t) | X(t1), . . . , X(tN )] = λ1 ·X(t1) + · · ·+ λN ·X(tN ) a.s. (3.8)

hold?

First, we mention a very general result on characteristic functions.
Theorem 3.5 Let Z = (Z0, Z1, . . . , ZN ) be a random vector with E[|Zj |] <∞, j = 0, . . . , N ,
and joint characteristic function ϕZ(s) = E[ei〈s,Z〉], s = (s0, s1, . . . , sN ) ∈ RN+1. Then,

E[Z0 | Z1, . . . , ZN ] =
N∑
j=0

λjZj a.s.

⇐⇒ ∂

∂s0
ϕZ(s0, s1, . . . , sN )

∣∣∣
s0=0

= λ1
∂

∂s1
ϕZ(s0, s1, . . . , sN ) + · · ·+ λN

∂

∂sN
ϕZ(s0, s1, . . . , sN ).

(3.9)

Proof See [29, Theorem 3.1]
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A random field X = {X(t), t ∈ T} is a SαS stationary Subgaussian random field, α ∈ (1, 2)
if

X(t) d=
√
A · Y (t),

where Y = {Y (t), t ∈ T} is a centered Gaussian random field with positive-definite covariance
function C(·), independent of A ∼ Sα/2((cos(πα4 ))2/α, 1, 0).

Corollary 3.6 Let X = {X(t), t ∈ T} be a SαS stationary Subgaussian random field. Then,
the regression (3.8) is always linear and coincides with (3.3) for µ = 0, i.e.

E [X(t0) | X(t1), . . . , X(tN )] = Σt0,t1,...,tN · Σ
−1
t1,...,tN (X(t1), . . . , X(tN ))ᵀ.

Proof Check the validity of condition (3.9) for Z = (X(t0), . . . , X(tN )) with characteristic
function ϕZ(s) = exp{−(sᵀΣs)α/2}, where Σ = (C(tj − tk))Nj,k=0.

Exercise 3.7 Proof Corollary 3.6.

Corollary 3.8 Let X = {X(t), t ∈ T} be a SαS random field, α ∈ (1, 2), and let Γ be the
spectral measure on SN of the SαS random vector (X(t0), . . . , X(tN ))ᵀ. Then,

E [X(t0) | X(t1), . . . , X(tN )] = λ1X(t1) + · · ·+ λNX(tN ) a.s.

⇐⇒
∫
SN

(x− λ1x1 − · · · − λNxN )(s1x1 + · · ·+ sNxN )〈α−1〉Γ(dx) = 0 (3.10)

for all s1, . . . , sN ∈ R, where a〈p〉 := |a|p · sgn(a) for a, p ∈ R and dx = dx0dx1 . . . dxN .

Note that, condition (3.10) is always satisfied for N = 1.

Proposition 3.9 Under the conditions of Corollary 3.7, it holds that E[X(t0) | X(t1)] =
λ1 ·X(t1) a.s., where

λ1 = [X(t0), X(t1)]α
σα

with scale parameter σ of X(t1) ∼ SαS(σ) and covariation

[X(t0), X(t1)]α =
∫
S1
x1 · x〈α−1〉

2 Γ(dx1, dx2)

of X(t0), X(t1) and Γ being the spectral measure of the vector (X(t0), X(t1))ᵀ.

Proof Write (3.10) for N = 1 in the form

s
〈α−1〉
1

∫
S2

xo · x〈α−1〉
1 Γ(dx)

︸ ︷︷ ︸
=[X(t0),X(t1)]α

= λ1 · s〈α−1〉
1

∫
S2

=|x1|α︷ ︸︸ ︷
x1 · x〈α−1〉

1 Γ(dx)

︸ ︷︷ ︸
=σ2

,

where dx = dx1dx2. After canceling s〈α−1〉
1 out, we get λ1 = [X(t0),X(t1)]α

σα .
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Remark 3.10 (Properties of the covariation): The covariation is a dependence measure
between jointly SαS random variables, α ∈ (1, 2], which may be considered a generalization of
covariance for α = 2. Indeed, for (Y1, Y2) ∼ S2S = N(0,Σ), with covariance matrix

Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
and spectral measure Γ it holds that[Y1, Y2]2 = 1

2cov(Y1, Y2), as the following comparison
between ϕ(Y1,Y2)(s) of a Gaussian and a SαS random vector shows:

ϕ(Y1,Y2)(s) = E
[
ei(s1Y1+s2Y2)

]
= exp

{
−
∫
S2

(s1x1 + s2x2)2Γ(dx)
}

= exp
{
−
(
s2

1

∫
S2
x2

1Γ(dx) + 2s1s2[Y1, Y2]2 + s2
2

∫
S2
x2

2Γ(dx)
)}

= exp
{
−1

2
(
s2

1 · varY1 + 2s1s2 · cov(Y1, Y2) + s2
2 · var(Y2)

)}
Setting s1 = 0 or s2 = 0 yields

var(Yj) = 2
∫
S2
x2
jΓ(dx), j = 1, 2,

hence
[Y1, Y2]2 = 1

2cov(Y1, Y2).

However, in the case α ∈ (1, 2) the covariation [X(t0), X(t1)]α of a SαS random vector
(Y1, Y2) is not a symmetric function of Y1, Y2, and it is linear only with respect to its first
argument.
The following proposition shows necessary conditions for Equation (3.8) to hold for any

N ≥ 1 that are much simpler than condition (3.10):
Proposition 3.11 Under the assumptions of Corollary 3.7, if

E[X(t0) | X(t1), . . . , X(tN )] =
N∑
j=1

λjX(tj) a.s. (3.11)

then the coefficients λ1, . . . , λN must satisfy the following system of linear equations:
N∑
j=1

λj [X(tj), X(tk)]α = [X(t0), X(tk)]α, k = 1, . . . , N. (3.12)

Proof Set cjk = [X(tj), X(tk)]α, j, k = 0, . . . , N . It holds that cjj = σαj , see the proof of
Proposition 3.8. Using its result, we infer for j = 1, . . . , N

c0j
σαj
·X(tj) = E [X(t0) | X(tj)] = E

[
E
[
X(t0) |

N∑
k=1

X(tk)
]
| X(tj)

]

Eq. (3.11)= E
[
N∑
k=1

λkX(tk) | X(tj)
]

= λjX(tj) +
∑
k 6=j

λkE[X(tk) | X(tj)]

Prop. 3.9= λjX(tj) +
∑
k 6=j

λk
ckj
σαj

X(tj) =
(

1
σαj

N∑
k=1

λkckj

)
X(tj).
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This leads to c0j =
∑N
k=1 λkckj , j = 1, . . . , N , which ultimately yields (3.12).

Since [Y1, Y2]α is not linear in its second argument, we can easily construct an example of a
non-linear regression, where the necessary condition (3.11) does not hold.
Example 3.12 Let Y1, Y2, Y3 be stochastically independent SαS random variables, α ∈ (1, 2).
Consider the SαS random vectorX = (X0, X1, X2)ᵀ withX0 = Y1, X1 = Y1+Y2, X2 = Y1+Y3.
Then,

E[X0 | X1, X2] 6= λ1X1 + λ2X2 a.s.

Exercise 3.13 Check that condition (3.11) in Example 3.12 is not satisfied.
Hint: Consider [X0, X1 + θX2]α and E[X0 | X1 + θX2] as a function of θ > 0.

Finally, we state the following positive result about regression:
Theorem 3.14 Let X = {X(t), t ∈ T} be a SαS random field, α ∈ (1, 2), and let locations
t0, t1, . . . , tN ∈ T , N ≥ 1, be chosen such that X(t1), . . . , X(tN ) are stochastically independent.
Then,

E [X(t0)|X(t1), . . . , X(tN )] =
N∑
j=1

λjX(tj) a.s.

where
λj = [X(t0), X(tj)]α

σαj

and σαj is the scale parameter of X(tj), j = 1, . . . , N .

Proof See [37, Corollary 4.1.5].

3.2 Kriging methods
The previous section, in particular Section 3.1.2, illustrated how prediction as a conditional
mean does not always lead to feasible computable forecasts, since the regression E[X(t) |
X(t1), . . . , X(tn)] may not be linear. From an application’s point of view however, linear
forecast methods are very easy to use and thus desirable to have. Hence, the need for linear L2-
theory of prediction for square-integrable random functions arose. After pioneering publications
[21, 39], where the linear predictor

X̂(t) =
N∑
j=1

λjX(tj) + λ0, t ∈W, (3.13)

was used with weights λ1, . . . , λN , which solve the minimization problem

E

[(
X̂(t)−X(t)

)2
]
→ min

λ1,...,λN
, (3.14)

the German geologist D.G. Krige was first to apply these predictors for gold ore mining predic-
tion in South Africa (1951). These linear prediction methods, further developed by the French
school of mathematical geology(1960s, G. Mathéron), were subsequently called linear inter- or
extrapolation, or Kriging, some of which we explore in the sequel. More detailed accounts on
Kriging methods can be found in the books [45, 51, 4, 22].
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3.2.1 Simple Kriging
Let X = {X(t), t ∈ T} be a (possibly non-stationary) square-integrable random field, i.e.
E[X2(t)] <∞, t ∈ T , with known covariance function C(s, t) = cov(X(s), X(t)), s, t ∈ T , and
mean function µ(t) = E[X(t)], t ∈ T .

Goal: Find a linear forecast (3.13) such that the prediction error E
[(
X̂(t)−X(t)

)2
]
is mini-

mal.

It is easily seen that

E
[(
X̂(t)−X(t)

)2
]

= var
(
X̂(t)−X(t)

)
+
(
E
[
X̂(t)−X(t)

])2
→ min

λ1,...,λN

if E[X̂(t)−X(t)] ≡ 0, i.e. the predictor X̂(t) is unbiased and E[X̂(t)] = E[X(t)] = µ(t), t ∈W .
Plugging in the linear form of X̂(t) from Equation (3.13) into this relation yields µ(t) =∑N
j=1 λjµ(tj) + λ0, hence, equivalently λ0 = µ(t)−

∑N
j=1 λjµ(tj), which allows for

X̂(t) = µ(t) +
N∑
j=1

λj(X(tj)− µ(tj)), t ∈W.

The latter expression implies that if µ(t) is explicitly known, then X(t) can be centered by
subtracting its mean in the forecast X̂(t).
Let t = t0 and consider

Ψ(λ) = var(X̂(t0)−X(t0)) = E


 N∑
j=0

λj(X(tj)− µ(tj))

2


with λ0 = −1 as the target function to be minimized with respect to λ = (λ1, . . . , λN ) ∈ RN .
Note that we used the fact that E

[∑N
j=0 λj(X(tj)− µ(tj))

]
= 0 for all λ1, . . . , λN in the above.

The necessary conditions of an extremum are ∂Ψ(λ)
∂λj

= 0, j = 1, . . . , N . Since

Ψ(λ) =
N∑

j,k=0
λjλk cov(X(tj), X(tk))︸ ︷︷ ︸

:=C(tj ,tk)

(3.15)

by linearity of the expectation, we get

∂Ψ(λ)
∂λj

= 2
N∑
k=0
k 6=i

λkC(tj , tk) + 2λjC(tj , tj) = 0, j = 1, . . . , N,

which, together with λ0 = −1, yields the system of linear equations
N∑
k=1

λj · C(tj , tk) = C(t0, tj), j = 1, . . . , N,

or, in matrix form,

Σλ = c0, (3.16)

where Σ = (C(tj , tk))Nk,j=1, λ = (λ1, . . . , λN )ᵀ ∈ RN and c0 = (C(to, t1), . . . , C(t0, tk))ᵀ.
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Theorem 3.15 Let X = {X(t), t ∈ T} be a square-integrable random field with known mean
function µ(t), t ∈ T , and positive definite covariance function C(s, t), s, t ∈ T . Then, the
simple Kriging method yields the unique predictor

X̂(t) = µ(t) +
N∑
j=1

λj(X(tj)− µ(tj))

with λ = (λ1, . . . , λN )ᵀ = Σ−1 · c0.

Proof The quadratic function Ψ(λ) has a unique minimum if Σ is invertible, since it is a
paraboloid function with Ψ(λ) ≥ 0 for all λ. Then, the vector λ, which satisfies ∂Ψ

∂λj
= 0,

j = 1, . . . , N , coincides with the unique solution of Equation (3.16).

Let us investigate the properties of simple Kriging forecast.
Theorem 3.16 (Properties of simple Kriging): Under the assumptions of Theorem 3.15,
the following holds.
(i) Exactness: X̂(tj) = X(tj), j = 1, . . . , N .

(ii) Smoothness: If µ, C are Ck-smooth, k ∈ N0, then so is X̂(·).

(iii) Shrinkage: var(X̂(t0)) ≤ var(X(t0)), t ∈W .

(iv) Orthogonality: E
[
(X̂(t0)−X(t0))Y

]
= 0 for all Y ∈ LN , where LN is the linear span of

X(tj), j = 1, . . . , N , i.e. LN = span{X(t1), . . . , X(tN )}

(v) If X is Gaussian, then the simple Kriging predictor coincides with Gaussian linear re-
gression, i.e.

X̂(t) = E [X(t0) | X(t1), . . . , X(tN )] a.s., t0 ∈W.

Proof (i) It is easy to see that for t0 = tj , the vector λ = (0, . . . , 0, 1
j
, . . . , 0) is the unique

solution of the system of linear equations in Equation (3.16).

(ii) The smoothness of

X̂(t0) = µ(t0) +
N∑
j=1

λj · (X(tj)− µ(tj)) = µ(t0) + X̄ · Σ−1c0

with X̄ = (X(t1)−µ(t1), . . . , X(tN )−µ(tN )) with respect to t0 ∈W is evidently controlled
by the corresponding smoothness of functions µ(·), C(·, tj).

(iii) One can easily see from Equation (3.16) that

E
[(
X̂(t0)−X(t0)

)2
]

= var(X(t0))− var(X̂(t0)) ≥ 0,

hence
var(X(t0)) ≥ var(X̂(t0)), t0 ∈W.

Indeed, Equations (3.16) and (3.15) together with λ0 = −1 imply that

Ψ(λ) = λᵀΣλ− 2λᵀ · Σλ︸︷︷︸
=c0

+ C(t0, t0)︸ ︷︷ ︸
=var(X(t0))

= var(X(t0))− λᵀΣλ︸ ︷︷ ︸
=var(X̂(t0))

.
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(iv) For any Y ∈ LN , there exist γ1, . . . γN ∈ R such that Y =
∑N
j=1 γjX(tj). Then,

E
[
Y ·

(
X̂(t0)−X(t0)

)]
= E

 N∑
j=1

γj ·X(tj) ·
N∑
j=0

λj(X(tj)− µ(tj))


=

N∑
j=1

N∑
k=0

γjλkE [X(tj) · (X(tk)− µ(tk))]

=
N∑
j=1

N∑
k=0

γjλk
(
E [X((tj)− µ(tj)) · (X(tk)− µ(tk))]︸ ︷︷ ︸

=C(tj ,tk)

+µ(tj) · E [X(tk)− µ(tk)]︸ ︷︷ ︸
=0

)

=
N∑
j=1

γj

(
N∑
k=1

λkC(tj , tk)− C(t0, tk)
)

= γᵀ Σλ︸︷︷︸
=c0

−γᵀ · c0 = 0,

where γ = (γ1, . . . , γN )ᵀ.

(v) The assertion follows from Equation (3.4), which evidently holds also for non-stationary
Gaussian random fields, see Remark 3.3.

Remark 3.17 (a) The shrinkage property (iii) in Theorem 3.16 means that the simple Krig-
ing estimate is less dispersed than the original random field. The simple Kriging predictor
X̂ thus provides a linear smoothing procedure which does not perfectly imitate the path

properties of the original field X. In particular, we have X̂(t)
d
6= X(t), t ∈W .

Other prediction methods which yield forecasts that are equal in marginal distribution
to X are e.g. conditional simulation and excursion metric prediction , see later sections
of Chapter 3.

(b) Property (iv) has the following geometric interpretation. The simple Kriging predictor
X̂(t0) = ProjLNX(t0) is the orthogonal projection of the unobserved random variable
X(t0) onto the linear subspace LN formed by available observations X(tj), j = 1, . . . , N ,
i.e.

ProjLNX(t0) = argmin
Y ∈LN

〈X(t0)− Y,X(t0)〉,

where 〈ξ, η〉 = E [ξ · η] for square-integrable random variables ξ, η.

(c) For Gaussian random fields X, the property

E
[(
X̂(t0)−X(t0)

)2
| X(t1), . . . , X(tN )

]
= E

[(
X̂(t0)−X(t0)

)2
]

a.s., t0 ∈W,

shown in the proof of Theorem 3.2, Equation (3.7) is called homoscedasticity.

(d) Another property of Gaussian simple Kriging is the conditional unbiasedness, i.e.

E
[
X(t0) | X̂(t0)

]
= X̂(t0) a.s., t0 ∈W.
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Indeed,

E
[
X(t0) | X̂(t0)

]
= E

[
E[X(t0) | X̂(t0)] | X(t1, . . . , X(tN )

]
= E

[
E[X(t0) | X(t1), . . . , X(tN )]︸ ︷︷ ︸

=X̂(t0)

| X̂(t0)
]

= X̂(t0)

by properties of the conditional expectation, since σ(X̂(t0)) ⊂ σ(X(t1), . . . , X(tN )), where
σ(L) denotes the σ-algebra generated by a family of random variables L.

Remark 3.18 The practical application of the simple Kriging estimates to spatial data is
tampered by the prerequisite to have an explicit knowledge of the mean value function µ(t)
(also called drift) and the covariance function C(s, t). Since both are in general unknown, they
have to be inferred statistically from the available spatial data.

Estimation of the drift

It is assumed that the unobserved mean function µ(·) can be decomposed into a series

µ(t) =
∑
j∈N

µjΨj(t), t ∈ T,

with respect to some orthonormal basis {Ψj}j∈N in L2(T ). Then, this series can be truncated
at some detail level M ∈ N and the coefficients

µj = 〈µ,Ψj〉2 =
∫
Rd

µ(t)Ψj(t)dt, j = 1, . . . ,M

are estimated from the data. Ideally, many paths of X have to be observed for drift estimation,
since the estimation of a non-constant mean value function based on only one single path is
highly unreliable.
Denoting the estimates of µj by µ̂j , we get

µ̂(t) =
M∑
j=1

µ̂jΨj(t).

The squared estimation error

‖µ(t)− µ̂(t)‖22 = ‖
M∑
j=1

(µj − µ̂j)Ψ(t) +
∞∑

j=N+1
µjΨj(t)‖22

(∗)=
M∑
j=1

(µj − µ̂j)2 +
∞∑

j=M+1
µ2
j ,

where (∗) follows from Parceval’s identity, has to be kept minimal, thus a trade-off between the
number of basis functionsM and the quality of estimates µ̂j , j = 1, . . . ,M , has to be accepted.
Common examples of bases in use include the Fourier basis, Wavelets, B-splines, etc. How-

ever, a simple Kriging based on an esimated drift µ̂ is prone to large errors. A way out would
be the use of other non-stationary methods of geostatistics such as e.g. universal Kriging [51,
Chapter 38].



3 Prediction of stationary random fields 35

Kriging with estimated covariance function

Since also the covariance function C(s, t), s, t ∈ T , is unknown, an estimate from spatial
data using inference methods from Section 2.2 is needed. However, the estimation result Ĉ is
not positively semi-definite, so that its immediate use in the linear system of simple Kriging
equations, see (3.16), is not recommended. The matrix Σ̂ := (Ĉ(tj , tk))Nj,k=1 is often singular
or ill-conditioned. To avoid the issue of numerical instability, a parametric covariance model
Cθ, θ ∈ Θ ∈ R is fitted to the estimator Ĉ such that the mean square error between Σ̂ and
Σθ = (Cθ(tj , tk))Nj,k=1 is kept minimal, i.e.

θ̂ = argmin
θ∈Θ

N∑
j,k=1

(Cθ(tj , tk)− Ĉ(tj , tk))2 · wjk, (3.17)

where weights wjk ≥ 0 with
∑N
j,k=1wjk = 1 are often taken to be uniform, i.e. wjk = N−2.

Then, the matrix Σθ̂ =
(
Cθ̂(tj , tk)

)N
j,k=1 and the vector ĉ0 =

(
Cθ̂(t0, t1), . . . , Cθ̂(t0, tN )

)ᵀ are
used in (3.16) to compute the vector of simple Kriging weights

λ = Σ−1
θ̂
· ĉ0.

The choice of the parametric model Cθ is usually made after a visual inspection of the
estimate Ĉ based on statistical experience [42, Section 2.1.4]. Since the estimate Ĉ often
exhibits discontinuities at the origin, one might suggest to use a family of models displaying
the so-called nugget effect σ2

t as well as geometric anisotropy.
Remark 3.19 (Nugget effect and geometric anisotropy): Let

Cθ(s, t) = σ2
t · I(s = t) + C0(

√
(s− t)ᵀQ(s− t)), s, t ∈ T,

where σ2 > 0, t ∈ T , C0(·) is a covariance function of a motion invariant random field on Rd,
and Q is a positive definite (d×d)-matrix responsible for anisotropy. This matrix can be chosen
as

Q = RΛRᵀ,

where Λ = diag(λ1, . . . , λd) is a diagonal matrix with diagonal entries λ1, . . . , λd > 0, and R is
a rotation matrix in Rd parametrized by Euler angles θ1, . . . , θd−1.

If we assume for simplicity σ2
t ≡ σ2

0 > 0, then the parameter vector θ with include σ2,
θ1, . . . , θd−1, λ1, . . . , λd as well as parameters of C0.
Example 3.20 (Exponential model): Choose d = 2, C0 : R+ → R+ with C0(x) = a · e−|x|
and

Q =
(

cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

)
·
(
η1 0
0 η2

)
·
(

cos(θ1) sin(θ1)
− sin(θ1) cos(θ1)

)
.

We get Cθ(s, t) = C1
θ (s − t), where Cθ(y) = σ2

0 · I(y = 0) + a exp
{
−
√
yᵀQy

}
, y ∈ R2, with

θ = (σ2
0, a, θ1, λ1, λ2).

Remark 3.21 Since the covariance estimates are non-reliable for high values of ‖s − t‖2, see
Figure 3.1 and exhibit large oscillation artefacts (due to the simple fact that the number of
pairs (tj , tk), j, k = 1, . . . , N with ‖tj − tk‖2 ≈ diag(W ) := max

s,t∈W
‖s− t‖ is rather small), it may

be reasonable to punish these artefacts in (3.17) by taking non-uniform weigths wjk that are
nearly zero for such lags (j, k) of C1

θ (y), y = (y1, y2)ᵀ ∈ R2 from Example 3.20.
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Fig. 3.1: An empirical isotropic covariance function Ĉ(‖t‖).

Fig. 3.2: Contour lines {y ∈ R2 : C1
θ (y) = const} of C1

θ (y), y = (y1, y2)ᵀ ∈ R2, from Example
3.20.

3.2.2 Ordinary Kriging

Assume that X = {X(t), t ∈ T}, T ⊂ Rd, is a wide-sense stationary random field with mean
µ = E[X(0)] and covariance function C(t) = cov(X(0), X(t)), t ∈ T , where the value of µ is
unknown. Assuming the linear form of the forecast X̂(t) as in (3.13) and the minimization of
the mean-square error (3.14), one sees that the unbiasedness of X̂(t) leads to

µ = E[X(t)] = λ0 +
N∑
j=1

λj E[X(tj)]︸ ︷︷ ︸
=µ

= λ0 + µ
N∑
j=1

λj ,
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which yields

µ

1−
N∑
j=0

λj

 = λ0.

Since the explicit form of X̂(t) must not depend on µ, we conclude that λ0 = 0,
∑N
j=1 λj = 1

is the only possible choice.
Consequently, the ordinary Kriging estimate X̂(t0) =

∑N
j=1 λjX(tj), t0 ∈W should satisfy

E(λ) = var
(
X̂(t0)−X(t0)

)
= E

[
(X̂(t0)−X(t0))2

]
→ min

λ=(λ1,...,λN )ᵀ

such that
∑N
j=1 λj = 1, where the function E(λ) is given by Equation (3.15), i.e.

E(λ) =
N∑

j,k=1
λjλkC(tj − tk)− 2

N∑
j=1

λj · C(t0 − tj) + C(0)︸ ︷︷ ︸
=σ2

= λᵀΣλ− 2λᵀC0 + σ2.

The quantities Σ, c0 are defined in Section 3.2.1.
Consider the Lagrange function of the constraint minimization problemλ

ᵀΣλ− 2λᵀc0 + σ2 → min
λ∈RN

,

λᵀ · e = 1,
(3.18)

where e = (1, . . . , 1) ∈ RN . Then,

L(λ, γ) = λᵀΣλ− 2λᵀ · c0 + σ2 + 2β(λᵀ · e− 1), β ∈ R,

is the so-called Lagrange multiplier .
Taking partial derivates of L(λ, γ) with respect to λj , β and setting them equal to zero, we

obtain the following system of linear equations in λ, β,
∂L
∂λj

=
∑N
k=1C(tj − tk) + β − C(t0 − tj) = 0, j = 1, . . . , N,

∂L
∂γ =

∑N
j=1 λ− 1 = 0,

(3.19)

or in matrix form {
Σλ = c0 − β · e,
λᵀ · e = 1.

(3.20)

The relation γ(t) = C(0)− C(t) connects the covariance C to the variogram γ of X. One can
easily rewrite (3.19) and(3.20) in a form, which is common in geostatistical literature, i.e.{∑N

k=1 λkγ(tj − tk)− β = γ(t0 − tj), j = 1, . . . , N,∑N
j=1 λj = 1,

(3.21)

or in matrix form {
Γ · λ = β · e+ Γ0,

λᵀ · e = 1,
(3.22)

where Γ = (γ(tj − tk))Nj,k=1 and Γ0 = (γ(t0 − t1), . . . , γ(t0 − tN ))ᵀ.
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Theorem 3.22 If the matrix Σ (or Γ) is non-singular, then the constrained optimization
problem (3.18) has the unique solution

λ = Γ−1(β · e+ Γ0), (3.23)

where
β = 1− eᵀΓ−1Γ0

eᵀΓ−1e
. (3.24)

The corresponding mean square error of the ordinary Kriging is given by

σ2
OK := E

[(
X̂(t0)−X(t0)

)2
]

= λᵀΓ0 − β (3.25)

with λ, β as above in (3.23) and (3.24).

Proof Relation (3.24) is evident. To show (3.23) multiply λ in (3.24) with e and set it equal
to 1, i.e.

1 = eᵀλ = βeᵀΓ−1e+ eᵀΓ−1Γ0,

hence
β = 1− eᵀΓ−1Γ0

eᵀΓ−1e
,

which proves (3.24). To show (3.25) rewrite E(λ) in terms of Γ. It follows

σ2
OK = E(λ) = −λᵀΓλ+ 2C(0)− 2λᵀc0 = −λᵀΓλ+ 2λᵀΓ0.

Here, we used the relations λᵀe = 1 and γ(t) = C(0) − C(t). Plugging (3.22) into the above
yields

σ2
OK = −λᵀ (βe+ Γ0)︸ ︷︷ ︸

=Γλ

+2λᵀΓ0 = −β λᵀe︸︷︷︸
=1
−λᵀΓ0 + 2λᵀ · Γ0 = λᵀΓ0 − β.

We may also give σ2
OK explicitly

σ2
OK = Γᵀ

0 · λ− β

= Γᵀ
0 · Γ−1 · Γ0 + β

(
Γᵀ

0 · Γ−1 · e− 1
)

= Γᵀ
0 · Γ−1 · Γ0 − β

(
1− eᵀ · Γ−1 · Γ0

)
= Γᵀ

0 · Γ−1 · Γ0 −
(1− eᵀ · Γ−1 · Γ0)2

eᵀΓ−1e
.

Remark 3.23 An advantage of expressing the ordinary Kriging system as in (3.22) is that it
is also applicable to intrinsically stationary random fields X of order 2, i.e., fields that may not
possess a finite variance, but have wide-sense stationary increments.
Theorem 3.24 (Properties of ordinary Kriging): For an intrinsically stationary random
field X = {X(t), t ∈ T} with observations X(tj), j = 1, . . . , N and variogram γ(·) such that the
matrix Γ = (γ(tk−tj))Nk,j=1 is invertible, the oridinary Kriging predictor X̂(t) =

∑N
j=1 λj ·X(tj)

with λ = (λ1, . . . , λN )ᵀ satisfying (3.23) possesses the following properties.

(i) Exactness: X̂(tj) = X(tj) a.s., j = 1, . . . , N .
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(ii) Orthogonality: For any Y ∈
{∑N

j=1 ajX(tj) :
∑N
j=1 aj = 0

}
= L̃N it holds 〈X̂(t0) −

X(t0), Y 〉2 = 0 for all t0 ∈W .

(iii) Conditional bias reduction: For all t0 ∈W it holds that

E
[(

E
[
X(t0) | X̂(t0)

]
− X̂(t0)

)2
]

= E
[(
X̂(t0)−X(t0)

)2
]
− E

[
var

(
X(t0) | X̂(t0)

)]
.

(3.26)

Proof (1) Set t0 = tj for some j ∈ {1, . . . , N} and show that λ = (0, . . . , 0,
j
1, 0, . . . , 0) is a

solution of (3.22), where β = 0 and

Γ0 = (γ(tj − t1), . . . , γ(tj − tj)︸ ︷︷ ︸
=γ(0)=0

, . . . , γ(tj − tN ))ᵀ.

Indeed, we have β = 0 by (3.24) since eᵀΓ−1Γ0 = eᵀ(0, . . . , 0, 1, 0, . . . , 0) = 1 by definition
of the inverse matrix Γ−1, while Γ0 is the j-th column of Γ. Then, the system (3.22)
reduces to Γ · λ = Γ0, which holds evidently by the explicit form of Γ, λ and Γ0.

(2) Let Y ∈ L̃N , i.e. Y =
∑N
j=1 aj ·X(tj) with

∑N
j=1 aj = 0. Then, with λ0 = −1 we have

E
[
Y ·

(
X̂(t0)−X(t0)

)]
= E

 N∑
j=1

ajX(tj) ·
N∑
k=0

λkX(tk)

 =
N∑
j=1

N∑
k=0

ajλk · E[X(tj)X(tk)]

=
N∑

j,k=1
ajλk ·

(
E[X(tj)X(tk)]− µ2

)
︸ ︷︷ ︸

=C(tj−tk)

+µ2 · 0−
N∑
j=1

aj E[X(t0)X(tj)]− µ2︸ ︷︷ ︸
=C(t0−tj)

−µ2 · 0

=
N∑
j=1

aj

(
N∑
k=1

λk · C(tj − tk)− C(t0 − tj)︸ ︷︷ ︸
=−β by (3.19)

)
= −β

N∑
j=1

aj︸ ︷︷ ︸
=0

= 0.

due to
N∑
j=1

aj = 0 and
N∑
j=1

λj = 1

(3) To prove relation (3.26), we apply the law of total variance

var(Y ) = var(E [Y | Z]) + E [var(Y | Z)] (3.27)

for any square-integrable random variables Y,Z. We may write for Z = X̂(t0), Y =
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X̂(t0)−X(t0) that

E
[(
X̂(t0)−X(t0)

)2
]

(∗)= var(X̂(t0)−X(t0))

= E
[
var(X̂(t0)−X(t0) | X̂(t0)

]
+ var

(
E
[
X̂(t0)−X(t0) | X̂(t0)

])
︸ ︷︷ ︸

=E[(X̂(t0)−E[X(t0)|X̂(t0))2]−
(
E[X̂(t0)]︸ ︷︷ ︸

=µ

−E[E[X(t0) | X̂(t0)]]︸ ︷︷ ︸
=EX(t0)=µ

)2

= E
[
E
[
X(t0) | X̂(t0)

]
− X̂(t0)

]2
+ E

[
E
[
[X̂(t0)−X(t0)− E(X̂(t0)−X(t0) | X̂(t0)]2 | X̂(t0)

]
︸ ︷︷ ︸

=var(X(t0)|X̂(t0)

]

= E
[(

E[X(t0) | X̂(t0)]− X̂(t0)
)2
]

+ E
[
var(X(t0) | X̂(t0)

]
,

where (∗) follows from E[X̂(t0)] = E[X(t0)] = µ.

Remark 3.25 (a) The shrinkage property var(X(t0)) ≥ var(X̂(t0)) of simple Kriging does
in general not hold for ordinary Kriging anymore. Indeed, we have

0 ≤ E(λ) = E
[(
X̂(t0)−X(t0)

)2
]

(3.17)= λᵀΣλ︸ ︷︷ ︸
=var(X̂(t0))

−2λᵀc0 + σ2
=var(X(t0))

(3.20)= λᵀΣλ(t0)− 2λᵀΣλ− 2β λᵀe︸︷︷︸
=1

+σ2

= σ2 − λᵀΣλ− 2β

hence

var(X(t0)) ≥ var(X̂(t0)) + 2β,

whereas the β given in (3.24) belongs to R, i.e. it can be ≥ 0 as well as < 0. It follows
that var(X(t0)) ≥ var(X̂(t0)) if β ≥ 0.

(b) The smoothness property holds for ordinary Kriging as follows. If C ∈ Ck(T ) or γ ∈
Ck(T ), k ∈ N0, then so is X̂ ∈ Ck(T ) a.s. This can be seen from Equations (3.23)-(3.26).
It holds that

λ = λ(t0) = β · Γ−1e+ Γ−1Γ0 = (1− eᵀ · Γ−1 · Γ0)
eᵀΓ−1e

Γ−1e+ Γ−1Γ0,

where only the term Γ0 depends on t0, and so λ inherits the smoothness of γ.

(c) The remarks about Kriging with estimated covariance function hold for ordinary Kriging
as well. However, it is more common to estimate the variogram γ of X, fit a valid para-
metric model γθ to γ̂ via weighted least squares and solve the system of linear equations
(3.22) as {

Γθ̂ · λ = βe+ Γθ̂,0,
λᵀe = 1,
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Fig. 3.3: Realization of an anisotropic Gaussian random field with the corresponding empirical
and theoretical variogram from Example 3.26.

where Γθ̂ = (γθ̂(tj − tk))
N
j,k=1, Γθ̂,0 = (γθ̂(t0 − t1), . . . , γθ̂(t0 − tN ))ᵀ, and {γθ, θ ∈ Θ} is a

parametric family of conditionally negative-definite functions [42, Proposition 2.2.1] with

θ̂ = argmin
θ∈Θ

N∑
j,k=1

wjk(γ̂(tj − tk)− γθ(tj − tk))2.

In the construction of γθ, a nugget effect and geometric anisotropy can be transferred
from the covariance functions via the relation γ(h) = C(0)− C(h), accordingly.

Example 3.26 Let X = {X(t), t ∈ R2} be a stationary anisotropic Gaussian random field
(d = 2) with variogram

γ(t) = γ1(t) + γ2(t), t ∈ R2,

where
γ1(t) = 1− e−‖t‖2 and γ2(t) = 1− exp−

√
tᵀQt

5 ,

and the matrix Q is given as in Example 3.20 with θ1 = 114, 59◦, η1 = 5, η2 = 1. A simulated
realization of X, an estimate γ̂ of γ as well as γ itself are given in Figure 3.3.

Example 3.27 Let X = {X(t), t ∈ R2} be a centered motion invariant Gaussian random field
observed in a window W = [0, 10]2 on the grid {(3j, 2k), j, k ∈ [0, 3] ∩ N0}. Let X have the
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Fig. 3.4: Microscopic steel image (left) and its empirical variogram estimated in different direc-
tions (right).

Whittle-Matern-type covariance function with nugget effect, i.e. we have

cov(X(0), X(t)) = C(t) = 2 · 1(t = 0) + 2κ1(2‖t‖2) · ‖t‖2 · 1(t 6= 0), t ∈ R2,

where

κn(x) = lim
ν→n

π

2 sin(πν)
(
ei
π
2 ν · J−ν(xei

π
2 )− e−i

π
2 ν · Jν(xe−i

π
2 )
)
, x ∈ R, n ∈ N,

is the modified Bessel function of the third kind, and

Jν(x) =
∞∑
r=0

(−1)r(x2 )2r+ν

Γ(ν + r + 1)r! , x ∈ C, ν ∈ R,

is the Bessel function of the first kind of order ν.
After estimating the variogram of X, see Section 2.2, by γ̂ from a realisation of X given in

Figure 3.5(a), a Whittle-Matern-type family of variogram models

γθ(t) = 1(t 6= 0)
[
σ2 + b− b · 21−ν(a‖t‖2)νκν(a‖t‖2)

]
, t ∈ R2,

with θ = (b, ν, a, b) is fitted to γ̂ by ordinary least squares, see Figure 3.5(c) (true variogram γ
is in red, γ̂ in green, and γθ̂ in black with the estimate θ̂ = (0.933, 1, 1.967, 1.067)). Then, the
ordinary Kriging is performed with γθ̂, its result being shown in Figure 3.5(b). As it is seen,
the Kriging result X̂ smooths out the rough surface of X.

3.2.3 Universal Kriging
Assume that X = {X(t), t ∈ T}, T ⊂ Rd is a non-stationary random field with drift µ(t) =
E[X(t)], t ∈ T , where

µ(t) =
M∑
j=0

µjΨj(t)
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Fig. 3.5: Application of ordinary Kriging to simulated data from Example 3.27

is a finite sum of orthonormal basis functions {Ψj , j ∈ N0},Ψ0(t) ≡ 1 as in Remark 3.18. Let
the random field Y = {Y (t) = X(t) − µ(t), t ∈ T} of residuals be wide-sense stationary with
covariance function C(t) = cov(Y (0), Y (t)), t ∈ T .
As in Sections 3.2.1 and 3.2.2, we are looking for a linear predictor of the form

X̂(t0) =
N∑
j=1

λjX(tj)

for t0 /∈ {t1, . . . , tN}, where X(tj), j = 1, . . . , N , are a sample of observed values, subject to
E[X̂(t0)] = E [X(t0)] = µ(t0). It follows that

M∑
k=0

µkΨk(t0) = µ(t0) =
N∑
j=1

λjµ(tj) =
M∑
k=0

µkΨk(t),

which yields
M∑
k=0

µk

Ψk(t0)−
N∑
j=1

λjΨk(tj)

 = 0.

Since µk are non-zero, the above equation is a source of the so-called universality constraints
N∑
j=1

λjΨk(tj) = Ψk(t0), k = 0, . . . ,M. (3.28)

For k = 0 the condition
∑N
j=1 λj = 1 known for ordinary Kriging appears. Minimizing the

target function
E(λ) = E

[(
X(t0)− X̂(t0)

)2
]

subject to the universality constraints with respect to λ = (λ1, . . . , λN ) via the Lagrange func-
tion

L(λ, β) = E(λ) +
M∑
k=0

βk

 N∑
j=1

λjΨk(tj)−Ψk(t0)


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with the Lagrange multipliers β0, . . . , βM leads to the system of linear equations for universal
Kriging (compare (3.19) - (3.20)){∑N

j=1 λjC(ti − tj)−
∑M
k=0 βkΨk(ti) = C(ti − t0), i = 1, . . . , N,∑N

j=1 λjΨk(tj) = Ψk(t0), k = 0, . . . ,M,

or, in matrix form, (
Σ Ψ̄
Ψ̄ᵀ 0̄

)(
λ
−β

)
=
(
c0
Ψ0

)
, (3.29)

where

Σ = (C(ti − tj))Ni,j=1,

Ψ̄ = (Ψk(ti))N M
i=1 k=0,

c0 = (C(t1 − t0), . . . , C(tN − t0))ᵀ,
Ψ0 = (Ψ0(t0), . . . ,ΨM (t0))ᵀ.

Lemma 3.28 If C is positive definite, then there exists a unique solution for the system of
linear equations (3.29).

Proof Since is Σ is invertible, the whole matrix
(

Σ Ψ̄
Ψ̄ᵀ 0̄

)
is invertible if the matrix Ψ̄ has full

rank, i.e. if its columns (Ψk(t1), . . . ,Ψk(tN ))ᵀ, k = 0, . . . , N , are linearly independent. This is
true since {Ψk}∞k=0 is an orthonormal basis.

Remark 3.29 To solve the system (3.29), we assumed that C and function Ψj are ex-
plicitly known. However, in practice the function C has to be estimated from the data
X(t1), . . . , X(tN ), which is e.g. possible by inferring the covariance of estimated residuals
Y ∗(tj) = X(tj)− µ̂(tj), where µ̂(·) is the estimated drift. This is a source of additional bias to
the universal Kriging [51, p.303-307].
Remark 3.30 The drift estimation previously mentioned in Remark 3.18 can be practically
exercised using an approach very similar to (3.29). In the expression µ(t) =

∑M
k=0 µkΨk(t),

assume that µk themselves are realizations of random variables Mk and estimated via

µ̂k =
N∑
j=1

α
(k)
j X(tj), k = 0, . . . ,M.

The unbiasedness of the estimator, i.e. E[µ̂k] = E[Mk], k = 0, . . . ,M , yields the constraints

N∑
j=1

α
(k)
j Ψl(tj) = δkl, k, l = 0, . . . ,M. (3.30)

Indeed, similar to (3.28), we may write

µk = E [µ̂k] =
N∑
j=1

α
(k)
j E[X(tj)] =

N∑
j=1

α
(k)
j µ(tj) =

N∑
j=1

α
(k)
j

M∑
l=0

µlΨl(tj) =
M∑
l=0

N∑
j=1

α
(k)
j Ψl(tj)µl,
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where

δkl =
{

1, k = l,

0, k 6= l.

Solving the minimization problem

E
[
(µ̂k − µk)2

]
→ min

α
(k)
1 ,...,α

(k)
N

, k = 0, . . . ,M,

subject to the constraints (3.30) via the Lagrange formalism leads to the system of linear
equations 

N∑
j=1

α
(k)
j C(ti − tj)−

M∑
l=1

β
(k)
j Ψl(ti) = 0, i = 1, . . . , N,

N∑
j=1

α
(k)
j Ψl(tj) = δkl, l = 0, . . . ,M, k = 0, . . . ,M,

(3.31)

where β(k)
l , k, l = 0, . . . ,M are the Lagrange multipliers, see Equation (3.29), which can be

shown to be
β

(k)
l = cov(µ̂k, µ̂l), k, l = 0, . . . ,M.

Exercise 3.31 Check the above.
The estimated drift is then given by

µ̂(t0) =
M∑
k=0

µ̂kΨk(t0) =
M∑
k=0

N∑
j=1

α
(k)
j X(tj)Ψk(t0).

However, the uncertainty of estimating C as mentioned in Remark 3.29 is still present. It can
be also shown that the drift estimation variance equals

E
[
(µ̂(t0)− µ(t0))2

]
= Ψ0ᵀ ·

(
Ψ̂ᵀ · Σ−1 · Ψ̂

)−1
·Ψ0

using the same notation as in (3.29). More on drift estimation can be found in [4, Section 3.4.5,
3.4.6].
Remark 3.32 (a) The variance of universal Kriging is equal to

σ2
UK = E

[(
X̂(t0)−X(t0)

)2
]

= C(0)− λᵀ · c0 + βᵀ ·Ψ0,

where (λ,−β) is the solution of the system (3.29).

(b) Similarly to ordinary Kriging , see Equation (3.22), one can rewrite the system of linear
equations in (3.29) in terms of the variogram γ(t) = 1

2E[Y (0) − Y (t)]2 of the residual
random field Y . Formally, the values C(ti − tj), i, j = 0, . . . , N , sould be replaced there
by −γ(ti − tj).

(c) Additivity property: The universal Kriging predictor X̂(t0) =
∑N
j=1 λjX(tj) can be de-

composed into
X̂(t0) = X̂SK(t0) + X̂∗(t0), (3.32)

where
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(i) X̂SK(t0) =
∑N
j=1 λ

SK
j X(tj) is the simple Kriging predictor of X(t0) as if X were

centered, i.e. after the substraction of the “known“ mean from the data, i.e. λSK =
(λSK1 , . . . , λSKN )ᵀ = Σ−1c0, compare (3.16).

(ii) The term

X̂∗(t0) = µ̂(t0)−
N∑
j=1

λSKj µ̂(tj) (3.33)

is the drift correction, where the estimated drift µ̂ is given in Remark 3.30.
Combining (i) and (ii) yields

X̂(t0) = µ̂(t0) +
N∑
j=1

(X(tj)− µ̂(tj)).

Indeed, substracting ΣλSK = c0 from the system Σλ − Ψ̄β = c0 out of (3.29) yields
Σ(λ− λSK)− Ψ̄β = 0.
Let λD := λ−λSK . Then ,the above relation together with the second equation Ψ̄ᵀλ = Ψ0

of (3.29) rewrites as {
Σ · λD − Ψ̄ · β = 0,
Ψ̄ᵀ · λ = Ψ0 − Ψ̄ᵀ · λSK ,

where the first equation coincides with the first one from (3.31) and both give birth to
the correction term X̂∗(t0).

Remark 3.33 (Further properties of universal Kriging): Similar to Theorem 3.24, the
properties of exactness, orthogonality and conditional bias reduction hold for universal kriging
as follows.
(a) X̂(tj) = X(tj) a.s., since λ = (0, . . . , 0, 1, 0, . . . , 0) and β = (0, . . . , 0) yield σ2

UK = 0,
compare Remark 3.32.

(b) For any

Y ∈


N∑
j=1

ajX(tj) :
N∑
j=1

ajΨk(tj) = 0, k = 0, 1, . . . ,M


it holds that 〈

X̂(t0)−X(t0), Y
〉

2
= 0, t0 ∈W.

(c) Equation (3.26) is still valid, which means that λ = (λ1, . . . , λN ) minimizing E[(X̂(t0)−
X(t0))2] also reduces the conditional bias E[X(t0) | X̂(t0)]− X̂(t0).

3.3 Geoadditive regression models
Prediction of spatial phenomena can occur, beyond random fields, also in the context of classical
(non)-linear regression. For that, consider the following setting. Let Yi be absolutely continuous
target or response random variables. Assume the regression model

Yi =
k∑
j=0

βjxij +
m∑
j=1

gj(zij) + fgeo(ti) + εi, i = 1, . . . , n, (3.34)
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where

(i) βᵀxi =
∑k
j=0 βjxij with parameter β = (β0, β1, . . . , βk)ᵀ and covariates xi = (1, xi1, . . . , xik)ᵀ,

where xi0 = 1 is the linear part and β, xi ∈ Rk+1, i = 1, . . . , k.

(ii) zi1, . . . , zim, i = 1, . . . , n are continuous covariates, and the unknown functions g1, . . . , gm
are smooth enough and all together form the non-linear additive part.

(iii) The unknown smooth function fgeo : Rd → R contains georeferenced information provided
at spatial locations ti ∈ Rd, i = 1, . . . , n

(iv) The random variable εi is the regression error with Eεi = 0 and Eε2
i = σ2 > 0. It is

usually assumed that εi are uncorrelated or even stochastically independent. Sometimes,
Gaussian errors are common, i.e. εi ∼ N(0, σ2).

The regression model in Equation (3.34) is called geoadditive. Its purpose is to yield esti-
mates for β, gj , fgeo given the data Y = (Y1, . . . , Yn), Z = (zij)n m

i=1 j=1, X = (xij)n k
i=1 j=1, t =

(t1, . . . , tn)ᵀ ∈ Rn×d.
The spatial locations ti can either attain a finite number of values, e.g. postal code centers

of a region, and are thus naturally modeled as vertices of a finite spatial graph. Alternatively,
they may have an uncountable range of values.

Similarly to the drift µ(·) in universal Kriging, we assume

fgeo(t) =
M∑
j=1

γj ·Ψj(t), M ∈ N, (3.35)

where Ψ = {Ψj}∞j=1 is an orthonormal basis of functions in a certain functional space. For
smoothing procedures, the basis functions Ψj may be assumed to have a certain degree of
smoothness, such as tensor products of univariate splines or Fourier basis. In higher dimensions
d� 2, the additive structure

fgeo(t) =
d∑
l=1

fl(tl), t = (t1, . . . , td)ᵀ ∈ Rd,

is often used to diminish the effect of the curse of dimensionality. Here, fl : R → R are
univariate functions which may themselves have a structure as in (3.35). The goal is to estimate
the regression coefficients γ1, . . . , γM in (3.35).
Similarly, functions gj are assumed to have the form

gj(z) =
N∑
l=1

αjl · ϕl(z), j = 1, . . . ,M, (3.36)

where ϕ = {ϕl}∞l=1 is another orthonormal basis in a certain functional space. The regression
coefficients α1l, . . . , αNl, l = 1, . . . , N , have to be estimated from the data.
Example 3.34 (Basis functions): (a) Tensor product bases: Let d = 2, t = (t1, t2)ᵀ ∈ R2.

For an orthonormal basis in L2(R) consisting of functions {Ψ1
j}j∈N, we may form

Ψj1j2(t) = Ψ1
j1(t1) ·Ψ1

j2(t2), j1, j2 ∈ N,
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thus yielding

fgeo(t) =
M1∑
j1=1

M2∑
j2=1

γj1j2Ψj1j2 , t ∈ R2.

Similarly, the construction can be easily adapted to any dimension d > 2.

(b) B-Splines: As an example of univariate bases {Ψ1
j}j∈N consider B-Splines on an interval

(a, b] ⊂ R. Their construction is iterative. Without loss of generality set a = 0, b = 1 and
let 0 ≤ c1 < c2 < · · · < cp = 1 be a decomposition of [0, 1] into disjoint intervals [cj , cj+1)
for j = 1, . . . , p− 1.
For any z ∈ [0, 1] consider l = 0 first and set

B0
j (z) = 1(z ∈ [cj , cj+1)), j = 1, . . . , p− 1,

and for higher orders l ≥ 1 proceed with

Bl
j(z) = z − cj−l

cj − cj−l
Bl−1
j−1(z) + cj+1 − z

cj+1 − cj+1−l
Bl−1
j (z), j = 1, . . . , p− 1.

For this calculation, we need 2l outer knots c1−l, . . . , c0, . . . , cp+1, . . . , cl lying outside of
the interval [0, 1]. For simplicity, cj can be often chosen equidistantly over [0, 1] and
beyond.
B-Splines have many interesting properties:
(i) Local basis: It holds that Bl

j(z) > 0 only on (cj−l, cj+1−l) and Bl
j(z) = 0, elsewhere

on [0, 1]. Vice versa, at any z ∈ [0, 1], only l + 1 functions Bl
j are positive. If cj are

chosen equidistantly, then all Bl
j have the same shape and are only shifted along the

z-axis.
(ii) Unity decomposition:

∑p
j=1B

l
j(z) = 1 for all z ∈ [0, 1], l ∈ N0.

(iii) Uniformly bounded: 0 ≤ Bl
j(z) ≤ 1 for all z ∈ [0, 1], j = 1, . . . , p− 1, l ∈ N0.

(iv) Derivates:
∂Bl

j(z)
∂z

= l

(
Bl−1
j−1(z)

cj − cj−1
−

Bl−1
j (z)

cj+1 − cj+1−l

)
,

which yields

∂

∂z

 p∑
j=1

γjB
l
j(z)

 = l ·
p∑
j=1

γj − γj−1
cj − cj−l

Bl−1
j−1(z), z ∈ [0, 1],

for any fixed l ≥ 1 and any coefficients γ0, γ1, . . . , γp ∈ R, γ0 = 0.

(c) Splines and the truncated power series: Another example of {Ψ1
j}j∈N is given by

Ψ1
1(z) ≡ 1,Ψ1

2(z) = z, . . . ,Ψ1
l+1(z) = zl,Ψl+j(z) = (z − cj)+, j = 2, . . . , p,

where l is chosen large enough, and the points {cj}pj=1 are as in Example (b). The sum

l+1∑
j=1

γjz
j +

p∑
j=2

γl+j(z − cj)l+
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is called a polynomial spline with truncated power series. Here,

a+ =
{
a, a ≥ 0,
0, a < 0,

denotes the non-negative part of a ∈ R. The second sum of truncated monomials (z−cj)l+
is designed to catch sudden changes of slope in the functional data.

We now return our focus to the geoadditive regression model in (3.34). Using the assumptions
on fgeo and gj in (3.35) and (3.36) we can state the regression model as

Yi =
K∑
j=0

βjxij +
m∑
j=1

N∑
l=1

αjlϕl(zij) +
M∑
j=1

γjΨj(ti) + εi, i = 1, . . . , n, (3.37)

or in matrix form

Y = Xβ +
N∑
l=1

ϕl(Z)αl + Ψtγ + ε,

where

Y = (Y1, . . . , Yn)ᵀ,
X = (xij)i=1,...,n, j=0,...,K ,

β = (β0, β1, . . . , βk)ᵀ,
αl = (αjl)mj=1, ϕl(Z) = (ϕl(zij))i=1,...,n, j=1,...,m, l = 1, . . . , N,
Ψt = (Ψj(ti))j=1,...,M, i=1,...,n,

γ = (γ1, . . . , γM )ᵀ,
ε = (ε1 . . . , εn)ᵀ.

We may combine everything in one single matrix X̃, i.e.

X̃ =


...

...
...

...
X ϕ1(Z) · · · ϕN (Z) Ψt
...

...
...

...


︸ ︷︷ ︸

k+1+m·N+M

n, β̃ =


β
α1
...
αN
γ


Summarizing, the linear model (3.37) is given by

Y = X̃ · β̃ + ε. (3.38)

The parameter vector β̃ can be estimated using the ordinary least squares procedure, i.e.

ˆ̃β = argmin
β̃∈Rk+1+mN+M

‖Y − X̃β̃‖22 (3.39)

Theorem 3.35 Let the matrix X have full rank K, and let n > k+ 1 +mN +M . If {ϕl}l and
{Ψj}j are linearly independent, then there exists a unique solution solution of (3.39), which is
given by

ˆ̃β =
(
X̃ᵀX̃

)−1
X̃ᵀY.
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Proof Since all the matrices X, ϕl(Z), l = 1, . . . , N , and Ψt have full rank, the matrix X̃ has
full rank equal to k+ 1 +mN +M . It follows that X̃ᵀX̃ is invertible. Hence, we can compute
the partial derivatives of ‖Y − X̃β̃‖22 and set them equal to zero. The solution is then given by
(3.39) It is unique since the target function represents a paraboloid.

Sometimes, it is also desirable to control the smoothness of the solution of the regression
equations. For that, a penalized regression is usually performed, which minimizes the energy
of functional basis approximation given by the integral of its second derivative. For instance,
if the j-th non-linear part is given by gj(z) =

∑N
l=1 αjl · ϕl(z), we define its energy by

E(gj) :=
∫
R

(
g′′j (z)

)2
dz =

N∑
i,l=1

αjlαji ·
∫
R
ϕ′′l (z)ϕ′′i (z)dz︸ ︷︷ ︸

Kil

= αᵀ
jKαj ,

where K = (Kil)i,l=1,...,N and αj = (αj1, . . . , αjN )ᵀ. Similarly, doing so for any gj , j = 1, . . . ,m,
and the geoadditive part fgeo with

E(fgeo) :=
∫
Rd

4fgeo(t)dt,

where 4 =
∑d
j=1

∂2

∂tj2 is the Laplace operator, we may come to the penalized regression:

‖Y − X̃β̃‖22 + λ · β̃ᵀK̃β̃ → min
β̃∈Rk+1+mN+M

, (3.40)

where the penalty factor λ ≥ 0 is chosen experimentally.
The matrix K̃ is a block matrix (similar to X̃):

K̃ =


...

...
...

...
0 Kϕ1 · · · KϕN KΨt
...

...
...

...

 .
Analogously to Theorem 3.35, the solution of (3.40) is given by

ˆ̃β =
(
X̃ᵀX̃ + λK̃

)−1
X̃ᵀY

for all λ ≥ 0 such that X̃ᵀX̃ + λK̃ is invertible.
Example 3.36 (Penalization): (a) Penalization with B-Splines: If for any fixed degree l

and j0 = 1, . . . ,m we have

gj0(z) =
p∑
j=1

αj0j ·Bl
j(z),

where Bl
j(·) are B-Splines, then using property (iv) in Example 3.34 (b) we may write

g′j0(Z) = l ·
p∑
j=1

αj0j − αj0j−1
cj − cj−l︸ ︷︷ ︸

=dj−1

Bl−1
j−1(z),
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g′′j0(Z) = l(l − 1) ·
p∑
j=1

dj−1 − dj−2
cj − cj−l︸ ︷︷ ︸

=ej−2

Bl−2
j−2(z),

which yields

E(gj0) = αᵀ
j0
Kαj0 = (l(l − 1))2

p∑
j=1

ei−2ej−2 ·
∫
R
Bl−2
i−2(z)Bl−2

j−2(z)dz.

An alternative (easier) way to write the penalization with B-Splines is to get rid of the
energy and replace it by a quadratic form αᵀ

j0
Krαj0 , where Kr := Dᵀ

rDr, and Dr =
D1Dr−1 is the recursively defined matrix of differences of order r, i.e.

D1 =



−1 1 0 . . . . . . . . . 0
0 −1 1 0 . . . . . . 0

0 0 −1 1
...

... . . . ...

... . . . 0
0 . . . . . . . . . 0 −1 1


is a ((d− 1)× d)-matrix differences of first order with

D1αj0 =

 αj02 − αj01
...

αj0p − αj0p−1

 ,
and

D2 =



1 −2 1 0 . . . . . . . . . 0
0 1 −2 1 0 . . . . . . 0

0 0 −1 1
...

... . . . ...

... . . . 0
0 . . . . . . 0 1 −2 1


is a ((d− 2)× d)-matrix of differences of second order. Ultimately, we get

λαᵀ
j0
Krαj0 = λ · αᵀ

j0
Dᵀ
rDrαj0 = λ · ‖Drαj0‖22 = λ

∑
j=r+1

(Λrαj0j)2,

where Λr = ΛΛr−1 is the difference of order r ≥ 2, Λαj0j = αj0j − αj0j−1.

(b) Truncated power series: For a regression as in Example 3.34 (c), the most popular form
of penalization is to keep the sum of coefficients of truncated powers

λ ·
p∑

j=l+2
γ2
j = λ · γᵀ ·Kγ

with γ = (γ1, . . . , γl+p)ᵀ, K = diag(0, . . . , 0︸ ︷︷ ︸
l+1

, 1, . . . , 1︸ ︷︷ ︸
p−1

) minimal.
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Example 3.37 (Radial basis functions and thin plate splines): Another way to construct
the basis {Ψj}∞j=1 in the geoadditive part of the regression model is via the so-called radial
functions, which are defined by

ΨX(t) = B(‖x− t‖2),

where the function B : R+ 7→ R depends only on the distance between an observation point
t ∈ Rd and a knot x ∈ Rd. Hence, instead of counting Ψj with j ∈ N, this functional system
is parameterized via a finite system of knots xj ∈ W, j = 1, . . . ,M , where W is our spatial
obervation window, see Figure 3.6. This kind of basis is advisable for isotropic spatial effects.

x1

xM

W

Fig. 3.6: Finite system of knots x1, . . . , xM in a window W ⊂ R2.

As an example for the function B, consider the so-called thin plate spline given by B(r) =
r2 · log(r), r > 0. As a georeferenced penalization criterion, the penalization

E(fgeo) =
∫
Rd

(
d2fgeo(t)

)2
dt

is often used instead of
E(fgeo) :=

∫
Rd

(
Λ2fgeo(t)

)2
dt,

where d2fgeo is the second differential of fgeo, i.e.

d2fgeo(t) =

 d∑
j=1

∂2

∂tj2
+ 2

∑
i<j

∂

∂ti
∂

∂tj

 fgeo(t).
Other common examples of radial functions B are B(r) = rl with l odd, B(r) =

√
r2 + c2, c > 0

constant, or B(r) originating from a covariance function of an isotropic random field, i.e.
C(s, t) = B(‖s − t‖2), s, t ∈ Rd. This random field may represent spatial effects in regression
model (3.34) giving rise to the part fgeo.
Example 3.38 (Markov random fields): Sometimes, the spatial location variable t may be
discrete, attaining a finite number of values, e.g. as in the case of postal codes. We assume that
t ∈ V , where Γ = (V,E) is a finite non-oriented geometric graph with a finite set of vertices
V = t1, . . . , tM ⊂ Rd and edges E. We say that the vertices ti, tj are neighbors (write ti ∼ tj)
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if they are connected by an edge (ti, tj) ∈ E. For instance, the set of vertices V may be a finite
regular grid of locations within an observation window W ⊂ Rd with an intuitive neighboring
relation, compare Figure 3.7.

t

s

(a) Regular square grid with a 4-
or 8-neighbourhood relation

t

(b) Regular triangulation
of plane with a 6-
neighbourhood relation

t

(c) Regular hexagonal lattice in
R2 with a 3-neighbourhood
relation

Fig. 3.7: Planar regular grids with corresponding neighbourhood relation

In this case, the georeferenced part is piecewise constant: fgeo(t) = γt, t ∈ V . A reasonable
penalization criterion is that values of γt for neighboring vertices t do not differ too much, i.e.

E(fgeo) =
∑

(s,t)∈E
(γs − γt)2.

In matrix form this can be expressed as

E(fgeo) = γᵀKγ,

with γ = (γt)t∈V , K = (Kst)s,t∈V is the adjacency matrix of the graph Γ, i.e. for s, t ∈ V we
have

Kst =


deg(s), s = t,

−1, s 6= t, s ∼ t,
0, s 6= t, s 6∼ t,

where deg(s) is the degree of a vertex s ∈ V , i.e., the number of all neighbors of s, i.e.

deg(s) = #{t ∈ V : t ∼ s}.

However, the order of vertices in V is important for the particular structure of K. It is desirable
to numerate t ∈ V so that all non-zero elements of K are located close to the main diagonal to
produce a band matrix with a small band width.
A popular model used in econometrics is the so-called spatial autoregressive process, which

is defined by
Ys = Xᵀ

s β + α
∑
t∼s

wstYt + εs, s ∈ V,

where Xs = (1, Xs1, . . . , Xsk)ᵀ, β = (β0, β1, . . . , βk)ᵀ represents the linear part (see (3.29),
(3.31)), the constant α ∈ [0, 1) is an autoregressive parameter, wst = wts are symmetric weights
such that wss = 0, s ∈ V , and the errors εd ∼ N(0, σ2) are i.i.d., s ∈ V . Then, the field
{Ys, s ∈ V } is called a Markov random field.
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3.4 Quantile regression
A drawback of geoadditive regression is the consideration of means of target variables, i.e.
E[Y ] = X̃β̃ in terms of (3.37), since E[ε] = 0. Here, E[Y ] = (E[Y1], . . . ,E[Yn])ᵀ, E[ε] =
(E[ε1], . . . ,E[εn])ᵀ. In addition, the method of least squares imposes the assumption E[Y 2

i ] <∞,
i = 1, . . . , n, which excludes heavy tailed regression errors εi with E[ε2

i ] =∞.
The goal of this Section is to construct a regression model which is not based on the (condi-

tional) means but on the (conditional) quantiles of Y , allowing for a more general structure of
the error vector ε. For a random variable Z, its quantile of order α ∈ (0, 1) is given by

F−Z (α) = inf x ∈ R : FZ(x) ≥ α := qα, (3.41)

where FZ(x) = P(Z ≤ x), x ∈ R, is the cumulative distribution function of Z. It has the
property

F−Z (α) = argmin
x∈R

E [wα(Z, x) · |Z − x|] , (3.42)

where

wα(Z, x) =


1− α, Z < x,

0, Z = x,

α, Z > x.

For α = 1
2 , the quantile q1/2(Z) is called median of Z. Here, w1/2(Z, x) = 1

2 · 1(Z 6= x).
Exercise 3.39 Show relation (3.42).

If a sample of i.i.d. realizations (Z1, . . . , Zn) of Z is given, the empirical quantile q̂α(Z) of Z
of order α ∈ (0, 1) is defined similarly to (3.41) as

1
n

∑
1(Zi ≤ q̂α) ≥ α, 1

n

∑
1(Zi ≥ q̂α) ≥ 1− α,

or equivalently similar to (3.42) as

q̂α(Z) = argmin
x

n∑
i=1

(wα(Zi, x) · |Z − x|) . (3.43)

The linear α-quantile regression is given by

Y = Xᵀβ + ε,

where Xᵀβ is the linear part with X = (1, x1, . . . , xk)ᵀ, β = (β0, β1, . . . , βk)ᵀ, and the regression
error random variable ε satisfies Fε(0) = α, where Fε(x) = P(ε ≤ x), x ∈ R. This implies

α = Fε(0) = P(ε ≤ 0) = P(Xᵀβ + ε︸ ︷︷ ︸
=Y

≤ Xᵀβ) = FY (Xᵀβ).

Hence, the α-quantile of the target random variable Y is given by Xᵀβ, i.e.

qα(Y ) = Xᵀβ, α ∈ (0, 1). (3.44)

For instance, α = 1
2 yields the median regression.
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Now, the α-quantile linear regression model, α ∈ (0, 1), given by

Yi = Xᵀ
i β + εi, i = 1, . . . , n,

where Y = (Y1, . . . , Yn)ᵀ is the vector of the target random variables Yi, i = 1, . . . , n, ε =
(ε1, . . . , εn)ᵀ is the vector of regression error random variables subject to assumptions that
ε1, . . . , εn are independent and Fεi(0) = α, i = 1, . . . , n. The matrix X = (xij)i=1,...,n, j=0,...,k
is the design matrix with rows Xi = (1, xi1, . . . , xik), i = 1 . . . n and β = (β0, . . . , βk)ᵀ is the
vector of regression coefficients. The estimation of β is based on relation (3.43), i.e.

β̂ = argmin
β∈Rk+1

n∑
i=1

wα (Yi, Xᵀ
i β) |Yi −Xᵀ

i β| (3.45)

The above minimization problem is usually solved numerically via linear programming or func-
tional gradient descent boosting. Let us explain the first of these two methods.
To minimize the target functional in (3.45), rewrite the regression errors as

Yi −Xᵀ
i β = εi = (εi)+ − (−εi)+, i = 1 . . . n,

with a+ = a · 1(a ≥ 0) such that
n∑
i=1

wα ((Yi, Xᵀ
i β)|Yi −Xᵀ

i β|) = α
n∑
i=1

ui + (1− α)
n∑
i=1

vi = αeᵀu+ (1− α)eᵀv,

where
ui := (εi)+ = (Yi −Xᵀ

i β)+, vi := (−εi)+ = (Xᵀ
i β − Yi)+,

with u = (u1, . . . , un)ᵀ, v = (v1, . . . , vn)ᵀ, e = (1, . . . , 1)ᵀ ∈ Rn. Then, the quantile regression
is given in total by the equation

Yi = Xᵀ
i β + ui − vi, i = 1 . . . n,

or in matrix form
Y = Xβ + u− v. (3.46)

In terms of constraint minimization (3.45), this can be rewritten asαe
ᵀu+ (1− α)eᵀv → min

β,u,v
,

Xβ + u− v = Y,

which is a linear programming problem with polyhedral constraints.
Theorem 3.40 (Properties of quantile regression):

(a) Invariance under monotone transforms: If Ti : R 7→ R is a monotone transformation of
the data, then the α-quantile regression (3.45) based on Yi, X

ᵀ
i β and Ti(Yi), Ti(Xᵀ

i β)
yield the same results.

(b) Asymptotic normality: If εi, i = 1, . . . , n, are i.i.d with probability density function fε,
then

XᵀX · (β̂ − β) d→ N

(
0, α(1− α)

f2
ε (δ) · Ik+1

)
, (3.47)

where Ik+1 is the ((k + 1)× (k + 1))-dimensional unity matrix.
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Remark 3.41 Although we will not prove the above theorem, let us comment on its assertions.

(a) The invariance property is clear since the quantiles are kept under monotonic transforms
Ti, i.e. qα(Ti(Yi)) = Ti(Xᵀ

i β), i = 1 . . . n, for any α ∈ (0, 1).

(b) Although the asymptotic variance in (3.47) is seemingly minimal if α→ 0 or α→ 1, the
requirement Fε(0) = α suggests that fε(0)→ 0 as well in such cases, which will dominate
the quantity α(1−α)

f2
ε (0) letting it diverge to ∞. This observation is in line with the fact that

estimating extremal quantiles qα(Yi), i.e. for α → 0 or α → 1, is difficult. Hence, the
the regression with α ≈ 1

2 , e.g. the median regression, will yield a smaller asymptotic
variance.
Using Equation (3.45), we can propose a similar framework for a non-linear α-quantile
regression

Yi = g(Zi) + εi, i = 1, . . . , n,
where the non-linear part g : [a, b] 7→ R, g ∈ C1[a, b], a < b, is approximated by a
truncated expansion, i.e.

g(x) ≈
N∑
l=1

αlϕl(x)

with respect to some function basis {ϕl}∞l=1 ⊂ L2[a, b], and Fεi(0) = α ∈ (0, 1), i =
1, . . . , n. Under the notation ~α = (α1, . . . , αN )ᵀ, one looks for the α-quantile regression
estimate ~̂α of ~α as

~̂α = argmin
α̂∈RN

n∑
i=1

wα

(
(Yi,

N∑
l=1

αlϕl(Zi)) · |Yi −
N∑
l=1

αlϕl(Zi)|+ λ · V (g′)
)
, (3.48)

where λ ≥ 0 is the penalization factor . Here, thepenalty is the total variation of the first
derivate of g, i.e.

V (g′) = sup
{xj}⊂[a,b]

n∑
j=1
|f ′(xx+1)− f ′(xj)|. (3.49)

The supremum is taken over all partitions of [a, b] into disjoint intervals (xj , xj+1] with
a ≤ x1 < x2 < · · · < xn−1 < xn ≤ b.
If we additionally assume g ∈ C2[a, b], we may write the penalty as

V (g′) =
∫ b

a
|g′′(x)|dx. (3.50)

This is similar to the penalty of the usual (geo-)additive linear regression, which was given
by
∫ b
a (g′′(x))2dx. The use of the L1-norm of g′′ instead of the L2-norm allows for the use

of linear programming methods for the minimization of the target functional in (3.48).
Since we approximate g(x) ≈

∑N
l=1 αlϕl(x), it follows that g′(x) ≈

∑N
l=1 αlϕ

′
l(x) and

V (g′) = sup
{xj}⊂[a,b]

n∑
j=1

∣∣∣∣∣
N∑
l=1

αl(ϕ′l(xj+1)− ϕ′l(xj))
∣∣∣∣∣

or

V (g′) =
∫ b

a

∣∣∣∣∣
N∑
l=1

αlϕ
′′
l (x)

∣∣∣∣∣ dx,
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respectively. For practical purposes, we may use xi = Z(i), i = 1, . . . , n, which yields

V (g′) ≈
n∑
i=1

∣∣∣∣∣
N∑
l=1

αl(ϕ′l(Z(i+1))− ϕ′l(Z(i)))
∣∣∣∣∣ .

Similar to (3.34) and (3.48), the geo-additive α-quantile regression can be computed by

qα(Yi) = Xᵀ
i β +

m∑
j=1

gj(zij) + fgeo(ti), i = 1, . . . , n.

Using the truncated series expansions gj(z) =
∑N
l=1 αjlϕl(z) and fgeo(t) =

∑M
j=1 γj ·Ψ(t)

leads to qα(Y ) = X̃β̃, compare (3.38).
The α-quantile estimate of β̃ is given by

ˆ̃β = argmin
β̃∈RK+1+m·N+M

[
n∑
i=1

wα
(
(Yi, (X̃ · β̃)i) · |Yi − (X̃ · β̃)|

)
+ λ · pβ̃

]
,

where the penalty is

pβ̃ =
m∑
j=1

V (g′j) + V (∇ggeo)

with

V (g′) =
n∑
i=1
|
N∑
l=1

αjl(ϕ′l(Z(i+1)j)− ϕ′l(Z(i)j))|, j = 1, . . . ,m,

as well as

V (∇fgeo) =
∫
Rd
|∆fgeo(t)|dt or V (∇fgeo) = |∂2fgeo(t)|dt.

Here, the penalty factor is λ ≥ 0 and (X̃ · β̃)i is the i-th coordinate of the vector X̃ · β̃.

Remark 3.42 (Formulation via a loss function): The α-quantile regression (3.45) can be
reformulated as follows. For any strictly increasing real function G, define the “tick“ function
for any α ∈ (0, 1) by

ρα(x) = (α− 1(x ≤ 0))x, x ∈ R.

Let
L(x, y) = ρα(G(x)− f(y)), x, y ∈ R,

be the loss function with the property L(x, y) ≥ 0 and L(x, y) = 0 if and only if x = y. Then,
the α-quantile regression estimate is

β̂ = argmin
β∈Rk+1

E [L(Y,Xᵀβ)]

for the regression (3.44), or, in a data setting,

β̂ = argmin
β∈Rk+1

n∑
i=1

L(Yi, Xᵀ
i β).
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Analogously, the unpenalized non-linear α-quantile regression Y = g(Z) + ε is given by

ĝ = argmin
g

E [L(Y, g(Z))]

or
ĝ = argmin

g

n∑
i=1

L(Yi, g(Zi)),

respectively, where g(Z) can be further linearized as in (3.48).

3.5 Prediction via level sets
Let (Ω,F ,P) be a complete probability space and X = {X(t), t ∈ T}, T ⊂ Rd be a strictly
stationary real-valued measure random field on (Ω,F ,P) with marginal distribution FX(x) =
P(X(s) ≤ x), x ∈ R. Assume that X is observed at locations t1, . . . , tN ∈ W , where W ⊂ Rd
is a compact non-empty observation window. For t /∈ {t1, . . . , tN}, we predict the value X(t)
by the linear predictor

X̂(t) =
N∑
j=1

λjX(tj)

such that weights λ1, . . . , λN are chosen to minimize a certain mean error criterion subject to
the additional constraint

X̂(t) d= X(t), t ∈W,

i.e., P(X̂(t) ≤ x) = P(X(t) ≤ x), x ∈ R. Compared to Kriging, which does not keep the
marginal distribution of X, this property is sometimes very desirable and is attained most of
the time by the so-called conditional simulation. However, to be able to mimic the law of X(t)
by a linear predictor X̂(t), it is necessary that X belongs to the so-called infinitely divisible
class.
Definition 3.43 (a) The probability law of a random vector Y : Ω→ Rm is called infinitely

divisible if for all n ∈ N there exist i.i.d. random vectors Yn1, . . . , Ynn such that

Y
d=

n∑
j=1

Ynj .

(b) A random field X = {X(t), t ∈ T} is called infinitely divisible if all its finite dimensional
distributions are infinitely divisible.

Examples of infinitely divisible random functions are Lévy processes and α-stable random
fields. Under the assumption that X is infinitely divisible it is guaranteed that the linear
combination

∑N
j=1 λjX(tj) may have a distribution of the same type as X(t).

Apart from the mean-square error E[(X(t) − X̂(t))2], which is used to compute Kriging
predictors, other error criteria, which do not impose the restriction of square-integrability onto
the field X, i.e. E[X2(t)] <∞, t ∈ T , are possible. One of them is based on the comparison of
the so-called level sets or excursion sets of X and X̂.
Definition 3.44 The excursion set of a random field X at a level u ∈ R observed on a window
W is given by

AX(u) := {t ∈W : X(t) > u}.
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Since X is measurable, the set AX(u) is Borel for any ω ∈ Ω, and thus its volume |AX(u)|
exists and is a random variable bounded a.s. by |AX(u)| ≤ |W |, where

|AX(u)| =
∫
W

1(X(t) > u)dt.

The error criterion measuring the prediction error of X by X̂ is given as an error-in-measure

E
[
|AX(u)∆AX̂(u)|

]
at an excursion level u ∈ R, where AX̂(u) = {t ∈ W : X̂(t) > u} and the symmetric difference
is defined by

AX(u)∆AX̂(u) :=
(
AX(u)\AX̂(u)

)
∪
(
AX̂(u)\AX(u)

)
.

Choosing an excursion level u according to a finite non-zero measure ν on (R,BR) allows us to
give the overall mean extrapolation error as

∫
R

E
[
|AX(u)∆AX̂(u)|

]
ν(du).

The measure ν can be chosen to be discrete, i.e. ν(·) =
∑k
j=1 δuj (·) with ν being concentrated

at atoms uj . Alternatively, it can be an absolutely continuous probability measure. Later on,
a choice ν(·) = PX(0)(·) is proven to be quite reasonable, since it provides meaningful levels u
such that AX(u) 6= ∅ with positive probability.
To compute the weights λ1, . . . , λN for the linear predictor X̂(t) we need to solve the mini-

mization problem 
∫
R E

[
|AX(u)∆AX̂(u)|

]
ν(du)→ min

λ1,...,λN
,

X̂(t) d= X(t), t ∈W.
(3.51)

The target functional above does not depend on t ∈ W , since it provides an average over all
t ∈ W . However, it would be desirable to let λ1, . . . , λN depend on the point t ∈ W . In order
to do so, we modify (3.51) as follows.

Theorem 3.45 The minimization problem in (3.51) is equivalent to the maximization problem


∫
W

∫
R P

(
X(t) > u, X̂(t) > u

)
ν(du)dt→ max

λ1,...,λN
,

X̂(t) d= X(t), t ∈W.

Proof First, rewrite

1(AX(u)∆AX̂(u)) = 1(X(t) > u) + 1(X̂(t) > u)− 21(X(t) > u)1(X̂(t) > u).
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Then, applying Fubini’s theorem yields

E
[
|AX(u)∆AX̂(u)|

]
= E

∫
W

1(AX(u)∆AX̂(u))dt


=
∫
W

P
(
t ∈ AX(u)∆AX̂(u)

)
dt

=
∫
W

[
P (X(t) > u) + P

(
X̂(t) > u

)
− 2P

(
X(t) > u, X̂(t) > u

)]
dt

= 2|W |P(X(0) > u)− 2
∫
W

P
(
X(t) > u, X̂(t) > u

)
dt,

where the last equality is due to the constraint in (3.51), i.e. X̂(t) d= X(t) d= X(0), and the
stationarity of X, i.e.∫

W

P(X(t) > u)dt = P(X(t) > u) ·
∫
W

dt = |W | · P(X(0) > u),

∫
W

P(X̂(t) > u)dt =
∫
W

P(X(0) > u)dt = |W | · P(X(0) > u).

Hence, the target functional in (3.51) can be rewritten as∫
R

E
[
|AX(u)∆AX̂(u)|

]
ν(du) = 2|W |

∫
R

(1− FX(u))ν(du)− 2
∫
R

∫
W

P(X(t) > u, X̂(t) > u)dtν(du).

Since the first term on the right-hand side does not depend on λ1, . . . , λN , the above expression
is minimal when ∫

W

∫
R
P
(
X(t) > u, X̂(t) > u

)
ν(du)dt (3.52)

is maximal.

In view of Theorem 3.45, we omit the integration over W with respect to t, and modify our
prediction problem as

∫
R
P(X(t) > u, X̂(t) > u)ν(du)→ max

λ1,...,λN
,

X̂(t) d= X(0),

 for any t ∈W, (3.53)

since the integral in (3.52) is maximal if its integrand is maximal for all t ∈ W . Thus, the
problem (3.51) yields a geometric motivation to the final formulation (3.52), see Figure 3.8
To solve the maximization problem (3.53) for each t ∈W , knowledge of the uni- and bivariate

probability law of X is required. The advantage of the criterion (3.53) is that no integrability
assumptions on X are needed. Thus, extrapolation of heavy-tailed random fields such as α-
stable random fields is possible. However, the choice of the measure ν may heavily influence the
results, and its optimality is still an open problem. Nonetheless, for Gaussian random fields,
the choice of ν is irrelevant, as we will see in the next section.
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u

tW

X(t)

X̂(t)

Fig. 3.8: The symmetric difference AX(u)∆AX̂(u) is shown in red for a process X = {X(t), t ∈
R} and its linear predictor X̂(t), t ∈ R (d = 1). The overall length of these intervals
is minimized to get a better fit of the path of X̂ to the path of X.

3.5.1 Gaussian level set prediction
Let X = {X(t), t ∈ T}, T ⊂ Rd, be a stationary measurable random field with mean E[X] = µ,
covariance function C(t) = cov(X(0), X(t)), t ∈ T, and variance σ2 = C(0) = var(X(0)) > 0.
In order to solve the maximization problem (3.53), we first reformulate the constraint X̂(t) d=
X(0) in terms of λ = (λ1, . . . , λN ). For ease of notation, we will omit the dependence of
λj = λj(t) on the location t ∈W , j = 1, . . . , N , in the following.
Note that, since X is Gaussian, the constraint X̂(t) d= X(0) is equivalent to{

E[X̂(t)] = µ

var(X̂(t)) = σ2 ⇒
{∑N

j=1 λjµ = µ∑N
i,j=1 λiλjC(ti − tj) = σ2 ⇒

{
λᵀe = 1
λᵀΣλ = σ2 ,

where e = (1, . . . , 1)ᵀ, Σ = (C(ti − tj))Ni,j=1. We refer to λᵀe = 1 as the simplex constraint
and to λᵀΣλ = σ2 as an ellipsoid constraint. In general, then mean µ 6= 0 is unknown. In the
case that µ = 0 is known, the simplex constraint would not be needed and hence could just be
omitted.
Recall the usual notation ct = (C(t− t1), . . . , C(t− tN ))ᵀ.

Lemma 3.46 The maximization problem (3.53) for stationary measurable Gaussian random
fields X with unknown mean µ is given by

cᵀtλ→ max
λ∈RN

,

λᵀΣλ = σ2,

λᵀe = 1.

(3.54)

if ν 6≡ 0.
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Proof We use the following representation of the Gaussian bivariate law [13, p.9]. Since the
bivariate vector (X(t), X̂(t)) is jointly Gaussian, it holds that

P(X(t) > u, X̂(t) > u) = φ̄2
µ,σ(u) + 1

2π

sin−1(ρt)∫
0

exp
{
−(u− µ)2

σ2 · 1− sin θ
cos2 θ

}
dθ,

where ρt = corr(X(t), X̂(t)), the function φµ,σ(x) = 1√
2πσ

x∫
−∞

e
(y−µ)2

2σ2 dy, x ∈ R, is the cumula-

tive distribution function of N(µ, σ2) and φ̄µ,σ(x) = 1−φµ,σ(x) is the tail probability function.
Then, using Fubini’s theorem, the target function in (3.53) simplifies to

F (λ, t) :=
∫
R
P(X(t) > u, X̂(t) > u)ν(du)

=
∫
R
φ̄µ,σ(u)ν(du) + 1

2π

∫ sin−1(ρt)

0

∫
R

exp
{
−(u− µ)2

σ2 · 1− sin θ
cos2 θ

}
ν(du)︸ ︷︷ ︸

=g(θ)

dθ.

It follows that

ρt = σ−2 ·
N∑
j=1

cov(X(t), X(tj)) = σ−2 · cᵀt · λ.

Since g(θ) > 0 for all θ ∈ [0, π/2), we get

sin−1(ρt)∫
0

g(θ)dθ → max
λ∈RN

⇐⇒ sin−1(ρt)→ max
λ∈RN

,

which is equivalent to
ρt → max

λ∈RN
,

since sin−1 is a monotonically increasing function.

Since |λᵀ · ct| = ‖Prctλ‖2 · ‖ct‖2, where Prctλ is the orthogonal projection of λ onto ct, it
follows ‖Prctλ‖2 → max

λ
. The geometric interpretation of maximization problem (3.54) is given

in Figure 3.9.
The problem (3.54) as a linear programming problem with a linear and a quadratic constraint

appears to be the special case of second order cone programming (SOCP) or quadratically
constrained quadratic problem (QCQP). We solve it again via the Lagrangian formalism (as in
the universal Kriging case).
Introduce numbers b0 := cᵀtΣ−1c+, b1 := eᵀΣ−1ct, b2 := eᵀΣ−1e if Σ is non-degenerate. Now

we are ready to formulate and prove the following existence and uniqueness result.
Theorem 3.47 For an unknown µ 6= 0, assume that there exists no β ∈ R such that ct = βe,
i.e. ct and e are not parallel to each other, and let Σ be positive definite. Then, there exists a
unique solution to (3.54) given by

λ = Σ−1
(√

σ2b2 − 1
b0b2 − b21

(ct −
b1
b2
e) + 1

b2
e

)
. (3.55)
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ct

λ

λ1

λ2

1

1

α

Fig. 3.9: The SOCP problem (3.54) for N = 2. Here, cᵀtλ = ‖ct‖2‖λ‖2 cos(α)→ maxλ.

Proof Let K := {λ ∈ Rn : λᵀe = 1, λᵀΣλ = σ2} be the set of weights that satisfy the
constraints in (3.54). For the vectors ej = (0, . . . , 0, 1, 0 . . . , 0)ᵀ, j = 1, . . . , N, it obviouly holds
ej ∈ K. Since the function λᵀct is linear, it is continuous on the compact set K and thus
attains its maximal value on K.
The Lagrange function for the problem (3.54) is given by

L(λ, γ, δ) = cᵀtλ+ γ(λᵀΣλ− σ2) + δ(eᵀλ− 1),

where γ, δ ∈ R are the Lagrange multipliers. Denote ∇λL :=
(
∂L
∂λ1

, . . . , ∂L
∂λN

)
. Computing ∇λL

and setting
∇λL(λ, γ, δ) = ct + 2γΣλ+ δe = 0

in order to find extreme points λ yields

2γλ = −Σ−1(ct + δe). (3.56)

Since ct 6= δe by assumption, it follows that γ 6= 0. Multiply (3.56) from the left by eᵀ and use
λᵀe = eᵀλ = 1 yields

2γ = eᵀΣ−1(ct + δe) = eᵀΣ−1ct︸ ︷︷ ︸
=b1

+δ eᵀΣ−1e︸ ︷︷ ︸
=b2

= b1 + δb2, (3.57)

and combining (3.56) and (3.57) we get

λ = Σ−1(ct + δe)
eᵀΣ−1(ct + δe) . (3.58)

We compute δ by plugging the above expression for λ into λᵀΣλ = σ2, i.e.

(cᵀt + δeᵀ) Σ−1ΣΣ−1︸ ︷︷ ︸
=Σ−1

(ct + δe) = σ2(eᵀΣ−1ct + δeᵀΣ−1e)2,
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or, in short form,
b2(σ2b2 − 1)δ2 + 2b1(σ2b2 − 1) + δ2b21 = b0,

which results in
(b2δ + b1)2 = b0b2 − b12

σ2b2 − 1 . (3.59)

It can be shown that σ2b2 > 1 and b0b2 ≥ b21 due to positive definiteness of Σ. Moreover,
b0b2 = b21 holds if and only if ct = βe for some β ∈ R, which is prohibited by assumption.

Hence, equation (3.59) has two distinct soultions given by

δ1,2 = −b1
b2
± 1
b2

√
b0b2 − b21
σ2b2 − 1 .

The corresponding values of λ1,2 can be calculated accordingly such that

cᵀtλ1 = b1
b2

+ 1
b2

√
(b0b2 − b21)(σ2b2 − 1) ≥ cᵀtλ2 = b1

b2
− 1
b2

√
(b0b2 − b21)(σ2b2 − 1),

hence λ1 maximizes cᵀtλ, leading to the unique solution

λ =
√
σ2b2 − 1
b0b2 − b21

Σ−1(ct −
b1
b2
e) + 1

b2
Σ−1e

if and only if b0b2 − b21 6= 0, i.e. if and only if there exists no β ∈ R such that ct = βe.

Remark 3.48 (a) In Equation (3.55), the vectors ct − b1
b2
e and e are orthogonal. Indeed, it

holds that

eᵀ(ct −
b1
b2
e) = b2e

ᵀct − b1
=N︷︸︸︷
eᵀe

b2
= b−1

2 (eᵀΣ−1eeᵀct −NeᵀΣ−1ct)

= b−1
2 (eᵀe︸︷︷︸

=N

eᵀΣ−1ct −NeᵀΣ−1ct) = 0,

since Σ−1 and eeᵀ commute because Σ−1 is symmetric and eeᵀ =

1 . . . 1
... . . . ...
1 . . . 1

.
(b) If ct and e are parallel, i.e. there exists a β ∈ R such that ct = βe, then cᵀt ≡ const for

all λ ∈ K. Indeed, ct = βe implies cᵀtλ = β eᵀλ︸︷︷︸
1

= β for some β ∈ R. Then, all λ ∈ K are

solutions to the problem (3.54), e.g. λ = ej , j = 1, . . . , N , are solutions as well.

(c) The linear predictor X̂(t) =
∑N
j=1 λjX(tj) is exact in the sense that X̂(t) = X(tj), j =

1, . . . , n. Indeed, here it follows from ct = Σej that

b0 = eᵀjΣ Σ−1Σ︸ ︷︷ ︸
=In

ej = eᵀjej = C(tj − tj) = σ2,

b1 = eᵀ Σ−1Σ︸ ︷︷ ︸
=In

ej = eᵀej = 1,
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hence by (3.55) we have weights

λ = Σ−1

√σ2b2 − 1
σ2b2 − 1(ctj −

1
b2

) + 1
b2
e

 = Σ−1ctj = ej .

We can conclude that

X̂(tj) = eᵀj (X(t1), . . . , X(tN ))ᵀ = X(tj), j = 1, . . . , N.

Example 3.49 Consider the case N = 2 and compute weights λ = (λ1, λ2)ᵀ in (3.55). Here,
X̂(t) = λ1X(t1) + λ2X(t2), K = {(1, 0), (0, 1)} is an intersection of an ellipsoid λᵀΣλ = σ2

with the line λ1 + λ2 = 1. Hence, by (3.55) λ is of the form

λ =


(1, 0), C(t− t1) > C(t− t2),
(0, 1), C(t− t1) < C(t− t2),
(1, 0) or (0, 1), C(t− t1) = C(t− t2),

which yields

X̂(t) =


X(t1), C(t− t1) > C(t− t2),
X(t2), C(t− t1) < C(t− t2),
X(t1) or X(t2), C(t− t1) = C(t− t2),

since the target functional to maximize over K is given by

λᵀct = λ1C(t− t1) + λ2C(t− t2).

Remark 3.50 (a) If µ is known, we may set µ = 0 without loss of generality and solve (3.53)
ignoring the constraint λᵀe = 1. This leads to the solution

λ = σ
Σ−1ct√
cᵀtΣ−1ct

. (3.60)

(b) We may compute the square extrapolation error given by

E
[(
X(t)− X̂(t)

)2
]

=

2(σ2 − b1
b2
− 1

b2

√
(b0b2 − b21)(σ2b2 − 1)), µ unknown,

2σ(σ −
√
cᵀtΣ−1ct), µ = 0 known.

This can be done using the explicit form of λ from (3.54) or (3.60) and

E
[(
X(t)− X̂(t)

)2
]

= λᵀΣλ︸ ︷︷ ︸
=σ2

−2cᵀtλ+ σ2 = 2(σ2 − cᵀtλ).

Another important property of the prediction method (3.53) is its L2 and a.s. consistency,
which states that X̂(t)→ X(t) as N →∞ in the following sense.
Theorem 3.51 Let the covariance function C be positive definite, and assume there exists no
β ∈ R such that ct = βe, e = (1, . . . , 1)ᵀ.



66 3 Prediction of stationary random fields

(a) Assume that C is continuous, and let min
j=1,...,N

‖tj − t‖2 → 0 as N →∞.
Then, it holds that

E
[(
X̂(t)−X(t)

)2
]
→ 0, N →∞.

(b) Let C be Hölder-continuous at zero with Hölder-index α > 0. Assume that {t1, . . . , tN} ⊂
TN := (hNZd) ∩W for some compact observation window W such that

∑∞
N=1 h

α
N < ∞.

Then, it holds that
X̂(t) a.s.→ X(t), N →∞.

Proof (a) Since λ = ej ∈ K, we have

eᵀj ct = C(t− tj) ≤ λᵀct, j = 1, . . . , N.

Taking jN := argmin
j=1,...,N

‖tj − t‖2, we can bound the mean-square error by

E[X̂(t)−X(t)]2 = 2(σ2 − cᵀtλ) ≤ 2(σ2 − C(t− tjN ))→ 0, N →∞, (3.61)

since C is continuous by assumption.

(b) Since the points tj lie in the set TN for all j = 1, . . . , N , it holds that ‖tjN − t‖2 ≤
√
dhN .

Furthermore, the Hölder-continuity of C implies that there exist constants C1, C2 > 0
such that

|C(0)− C(t)| ≤ C1‖t‖α2
for all t with ‖t‖2 ≤ C2.
Then,

∞∑
N=1

E
[(
X̂(t)−X(t)

)2
] (3.61)
≤ 2

∞∑
N=1
|C(δ)− C(t− tj)|

≤ 2C1

∞∑
N=1
‖(t− tj‖2 ≤ 2dα/2c1

∞∑
N=1

hαN <∞.

By the Tschebyschew inequality it follows that

∞∑
N=1

P(|X̂(t)−X(t)| > ε) ≤ 1
ε2

∞∑
N=1

E
[(
X̂(t)−X(t)

)2
]
<∞

for all ε > 0, and thus X̂(t)→ X(t) a.s. as N →∞ by the lemma of Borel-Cantelli.

Remark 3.52 It follows from the proof of Theorem 3.51 (b) that

E
[(
X̂(t)−X(t)

)2
]
≤ 2C1 min

j=1,...,N
‖t− tj‖α2 .

That is, the speed of convergence of X̂(t) to X(t) as N →∞ depends on the roughness of the
paths of X, which is encoded in a larger constant C1 or smaller index α > 0.
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In Figure 3.10 we consider a Gaussian process X with exponential covariance function C(t) =
e−|t| and compare prediction results X̂ for observation points tj = j, j = 1, . . . , 100, in Figure
3.10a and for tj = 0.2j, j = 1, . . . , 500, see Figure 3.10b. Figure 3.11 compares results of our
level set predictor X̂ for a Gaussian process X with Gaussian covariance C(t) = e−t

2/2 and
known mean µ = 0 as well as the case of an unknown mean. The results are additionally
compared to simple Kriging and ordinary Kriging.

3.5.2 Excursion metric projections
In the minimization problem (3.51) the target function was rewritten in the proof of Theorem
3.45 as ∫

R
E
[
|AX(u)∆AX̂(u)|

]
ν(du) =

∫
W

∫
R
P
(
t ∈ AX(u)∆AX̂(u)

)︸ ︷︷ ︸
=∆X,X̂(u)

ν(du)dt,

where ∆X,X̂(u) = P({X(t) > u}∆{X̂(t) > u}). The inner integral can be seen as a measure of
distance between the random variables X(t) and X̂(t), which leads to the following definition.
Definition 3.53 For a finite measure ν on R and random variables Y1, Y2 : Ω→ R, we call

Eν(Y1, Y2) :=
∫
R
P ({Y1 > u}∆{Y2 > u}) ν(du)

the excursion pseudo-metric.
Without loss of generality, assume ν to be a probability measure in the sequel. Let L0(Ω,F ,P)

be the space of all random variables on the probability space (Ω,F ,P). The fact that Eν is a
pseudo-metric can be seen from

(i) Eν : L0(Ω,F ,P)2 → [0, 1] is symmetric,

(ii) It satisfies the triangle inequality Eν(Y1, Y2) ≤ Eν(Y1, Y3)+Eν(Y3, Y2) for any Y1, Y2, Y3 ∈
L0(Ω,F ,P).

Since Eν(Y1, Y2) = 0 does not imply that Y1 = Y2 a.s., Eν fails to be a metric.
Let us rewrite our prediction problem in terms of metric projections with respect to Eν . For

that, we will need further properties of Eν , which involve the notion of a copulas.

3.5.3 Copulas
Definition 3.54 A fuction C : [0, 1]2 → [0, 1] is a (bivariate) copula if it is a cumulative
distribution function of a random vector (U1, U2), where U1, U2 ∼ U [0, 1].
Copulas measure the dependence between random variables, which finds its reflections in the

following result.
Theorem 3.55 (Sular, 1959): Let Y = (Y1, Y2) be a random vector on (Ω,F ,P) with joint
distribution function FY (x1, x2) = P(Y1 ≤ x1, Y2 ≤ x2), x1, x2 ∈ R, and marginal distribution
functions FYj (x) = P(Yj ≤ x), j = 1, 2. Then, there exists a copula C such that

FY (x1, x2) = C(FY1(x1), FY2(x2)), x1, x2 ∈ R.

This copula is unique on the set FY1(R̄)×FY2(R̄), where FYj (R̄) is the image of R̄ = R∪{±∞}
under the mapping FY1 : R̄→ [0, 1], j = 1, 2.
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(a) X with exponential covariance C(t) = e−|t|, observed at tj = j, j = 1, . . . , 100.
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(b) X with exponential covariance C(t) = e−|t|, observed at tj = 0.2j, j = 1, . . . , 500.

Fig. 3.10: Comparison of trajectories of Gaussian process X with exponential covariance (blue)
and its predictor X̂ with unknown mean (green) observed at tj = j, j = 1, . . . , 100
(3.10a) and tj = 0.2j, j = 1, . . . , 500 (3.10b).
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Fig. 3.11: A path of a Gaussian process X (blue) with gaussian covariance function C(t) =
e−t

2/2 is compared to our new linear predictor X̂ with known mean µ = 0 (orange),
with unkonwn mean (green), simple kriging (red) and ordinary kriging (yellow).

Remark 3.56 Note that, if the marginal distribution functions FYj are continuous on R, then
FYj (R̄) ⊂ [0, 1] and hence the copula C in Theorem 3.55 is unique.

Example 3.57 Let U = (U1, U2) be a random vector with its joint distribution function being
a copula C and Uj ∼ U([0, 1]), j = 1, 2.

(a) Independence copula: If U1, U2 are stochastically independent, then

C(x1, x2) = x1x2, x1, x2 ∈ [0, 1].

(b) Comonotonicity copula: If U1 = U2 = U0 a.s., then

C(x1, x2) = P(U0 ≤ x1, U0 ≤ x2) = P(U0 ≤ min{x1, x2}) = min{x1, x2}, x1, x2 ∈ [0, 1].

Notation: M2(x, y) = min{x, y}, x, y ∈ [0, 1].

(c) Linear dependence copula: If U1 = U0, U2 = 1− U0, U0 ∼ U([0, 1]), then

C(x1, x2) = P(U0 ≤ x1, 1− U0 ≤ x2)
= P(1− x2 ≤ U0 ≤ x1) = max{0, x1 + x2 − 1}, x1, x2 ∈ [0, 1].

Notation: W2(x, y) := max{0, x+ y − 1}, x, y ∈ [0, 1].

Theorem 3.58 (Hoeffding-Fréchet bounds (1940, 1951)): For any copula C : [0, 1]2 →
[0, 1], it holds that

W2(x, y) ≤ C(x, y) ≤M2(x, y), x, y ∈ [0, 1].
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Proof (i) We first show the upper bound. Using the monotonicity of probability measures,
it follows that

C(x, y) = P ({U1 ≤ x} ∩ {U2 ≤ y}) ≤ minP(U1 ≤ x)︸ ︷︷ ︸
=x

,P(U2 ≤ x)︸ ︷︷ ︸
=y

= min{x, y} = M2(x, y), x, y ∈ [0, 1],

where C(·, ·) is a joint distribution function of (U1, U2), Uj ∼ U([0, 1]), j = 1, 2.

(ii) For the lower bound, write

C(x, y) = 1− P({U1 > x} ∪ {U2 > y}) ≥ 1− P(U1 > x)− P(U2 > y)
= 1− (1− x)− (1− y) = x+ y − 1, x, y ∈ [0, 1].

Since C(x, y) ≥ 0 as it is a cumulative distribution function, we have C(x, y) ≥W2(x, y).

3.5.4 Excursion metric and its properties

For any Y1, Y2 ∈ C0(Ω,F ,P) we introduce the notation

Y1 ∧ Y2 := min{Y1, Y2}, Y1 ∨ Y2 := max{Y1, Y2}.

Then, ∆Y1,Y2(u) = P({Y1 > u}∆{Y2 > u}) rewrites as

∆Y1,Y2(u) = P(Y1 > u) + P(Y2 > u)− 2P(Y1 > u, Y2 > u)
= P(Y1 ≤ u) + P(Y2 ≤ u)− 2P(Y1 ≤ u, Y2 ≤ u)
= FY1(u) + FY2(u)− 2C(FY1(u), FY2(u))

by Theorem 3.55, where FYj , j = 1, 2, are the marginal distribution functions of (Y1, Y2) and
C is a copula. Moreover, note that

∆Y1,Y2(u) = P(Y1 ∨ Y2 > u)− P(Y1 ∧ Y2 > u) = P(Y1 ∧ Y2 ≤ u)− P(Y1 ∨ Y2 ≤ u), (3.62)

which leads to the following result.
Lemma 3.59 Let ν be a probability law of a random variable U : Ω → R representing the
random choice of an excursion level. Then it holds for any Y1, Y2 ∈ L0(Ω,F ,P) that

(a) Eν(Y1, Y2) = E [|FU (Y2−)− FU (Y1−)|], where FU is the cumulative distribution function
of U and FU (x−) = lim

y→x−0
FU (y) for any x ∈ R.

(b) Eν(Y1, Y2) = P(Y1 ∧ Y2 ≤ U ≤ Y1 ∨ Y2).

Proof (a) Applying Equation (3.62) yields

Eν(Y1, Y2) =
∫
R
E [1(u < Y1 ∨ Y2)− 1(u < Y1 ∧ Y2)] ν(du)

= E [FU (Y1 ∨ Y2−)− FU (Y1 ∧ Y2−)] = E [|FU (Y2−)− FU (Y1−)|] . (3.63)
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(b) Equivalently, (3.63) can be rewritten as Eν(Y1, Y2) = P(Y1 ∧ Y2 ≤ U ≤ Y1 ∨ Y2).

Note that in part (b), the random level U separates Y1 and Y2, which motivated M. Taylor
(1984) to call Eν(Y1, Y2) a separation pseudo-metric. Furthermore, if FU is continuous, it
follows that FU (x−) = FU (x) for all x ∈ R leading to Eν(Y1, Y2) = E[|FU (Y1)−FU (Y2)|], which
is called FU -madogram in geostatistics.
Denote by XS ⊆ L0(Ω,F ,P) the subspace of random variables with support S ⊂ R.

Theorem 3.60 If FU is strictly increasing on S, then Eν is a metric on XS ×XS .

Proof (i) The symmetry of Eν is trivial.

(ii) For the triangle inequality, we compute

Eν(Y1, Y2) (∗)= E [|FU (Y1−)− FU (Y2−)|]
≤ E [|FU (Y1−)− FU (Y3−)|] + E [|FU (Y2−)− FU (Y3−)|]
= Eν(Y1, Y3) + Eν(Y2, Y3)

for any Y1, Y2, Y3 ∈ XS , where the equality (∗) follows from Lemma 3.59.

(iii) Let Eν(Y1, Y2) = 0 for some Y1, Y2 ∈ XS . By Lemma 3.59, we have FU (Y1−) = FU (Y2−)
a.s., and since FU is monotonically increasing on S, it follows that P(Y1 = Y2) = 1, i.e.
Y1 = Y2 a.s. Ultimately, it holds that Eν is a metric on XS ×XS .

Question: Which choice of U or ν(·) is preferable from the practical point of view for the
prediction of random variables?

Consider Y1, Y2 ∈ XS . If for example S ⊂ R+, supp(U) ⊂ R, then

FU (Y1 ∨ Y2−) = FU (Y1 ∧ Y1−) = 1,

which leads to a degenerate metric. Thus, we may require supp(U) ∩ S 6= ∅, or, ideally,
supp(U) = S. This allows for the choices FU = FY1 or FU = FY2 . Without loss of generality,
assume FU = FY1 in the sequel. Then, relation (3.63) can be stated as

Eν(Y1, Y2) = E[FY1(Y1 ∨ Y2)]− E[FY1(Y1 ∧ Y2)]
= 2E[FY1(Y1 ∨ Y2)]− E[FY1(Y1)]− E[FY1(Y2)]

= 2E[FY1(Y1 ∨ Y2)]− 1
2 − E[FY1(Y2)], (3.64)

since FY1(Y1) ∼ U([0, 1]) and therefore E[FY1(Y1)] = 1
2 in the above.

Now consider the case Y1
d= Y2, where FY1(x) := F1(x) is strictly increasing, e.g. if Y1 is

absolutely continuous on S. Then, Equation (3.64) simplifies to Eν(Y1, Y2) = 2EF1(Y1∨Y2)−1.
By Theorem 3.60, it is a metric on the space {Y ∈ XS : P(Y ≤ x) = F1(x)} ⊂ L0(Ω,F ,P).
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Lemma 3.61 Let Y1, Y2 ∈ L0(Ω,F ,P) have an absolutely continuous cumulative distribution
function F1. Then, the excursion metric Eν with ν ∼ F1, i.e. ν = dF1, has the representation

Eν(Y1, Y2) = 1− 2
∫ 1

0
C(x, x)dx,

where C is a copula of (Y1, Y2).

Proof We know that

∆Y1,Y2(u) = 2(F1(u)− C(F1(u), F1(u))), u ∈ R.

Substituting x = F1(u) leads to

Eν(Y1, Y2) = 2
∫
R

(F1(u)− C(F1(u), F1(u))) dF1(u) = 2
1∫

0

(x− C(x, x))dx = 1− 2
1∫

0

C(x, x)dx.

We arrive at the following definition.
Definition 3.62 Let Y1, Y2 ∈ LF1 , where LF1 is the space of random variables with absolutely
continuous cumulative distribution function F1. The excursion metric G = Eν with ν ∼ F1
given by

G(Y1, Y2) = 1− 2
∫ 1

0
C(x, x)dx

is called Gini metric. Here, the function C is the copula of the random vector (Y1, Y2).
If the set {C(x, x), x ∈ [0, 1]} were convex, the term 2

∫ 1
0 (x − C(x, x))dx equals to the Gini

coefficient of the Lorenz curve {(x,C(x, x)), x ∈ [0, 1]} used in econometrics for example to
measure the concentration of wealth in the society. Hence, the name “Gini metric“.
Remark 3.63 Taking into account that x = min{x, x} = M2(x, x), we can rewrite G(Y1, Y2)
as

G(Y1, Y2) = 2
1∫

0

(x− C(x, x))dx = 2‖M2(x, x)− C(x, x)‖L1[0,1],

where ‖h‖L1[0,1] =
∫ 1

0 |h(x)|dx is the L1-norm of h. Hence, G(Y1, Y2) can be interpreted as the
L1-distance between the diagonal of the complete dependence copula to the diagonal of the
copula of (Y1, Y2).

Lemma 3.64 For any Y1, Y2 ∈ LF1 , it holds that G(Y1, Y2) ∈
[
0, 1

2

]
. Furthermore, G(Y1, Y2) =

1
2 implies Y2 = f(Y1) a.s., where f is a decreasing function such that F1(x) = 1− F1(f−1(x)),
x ∈ R.

Proof By Theorem 3.58, we have

1
4 =

∫ 1

0
max{0, 2x− 1}dx︸ ︷︷ ︸
=
∫ 1

1/2(2x−1)dx

=
∫ 1

0
W2(x, x)dx ≤

∫ 1

0
C(x, x)dx

≤
∫ 1

0
M2(x, x)dx =

∫ 1

0
xdx = 1

2 ,
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which yields

0 = 1− 21
2 ≤ G(Y1, Y2) = 1− 2

1∫
0

C(x, x)dx ≤ 1− 21
4 = 1

2 .

The upper bound is attained whenever Y2 = f(Y1) for a decreasing function f , which means
that

F1(x) = P(Y2 ≤ x) = P(f(Y1) ≤ x) = P(Y1 ≥ f−1(x)) = 1− P(Y1 < f−1(x)) = 1− F1(f−1(x)),

since Y1
d= Y2 and Y2 has an absolutely continuous distribution.

Example 3.65 (a) Assume that the distribution F1 is symmetric around µ ∈ R, i.e. F1(x) =
1 − F1(µ − x), x ∈ R. Then, it holds that G(Y1, Y2) = 1

2 if Y1 + Y2 = µ a.s. with
f(x) = µ− x, x ∈ R.

(b) If Y1, Y2 are stochastically independent, then G(Y1, Y2) = 1 − 2
∫ 1
0 x

2dx = 1
3 , since

C(x, y) = x · y for x, y ∈ [0, 1].

3.5.5 Forecasting via excursion metric

Let X be a random variable which has to be predicted based on “observations“ X1, . . . , XN

such that Xj
d= X, j = 1, . . . , N . Assume that X has a continuous distribution function FX .

We consider the predictor X̂λ of X to be of the form

X̂λ = g(X1, . . . , Xn, λ),

where g : RN × RN 7→ R is a Borel-measurable function of the sample X1, . . . , XN and
(λ1, . . . , λN ) = λ ∈ Λ ⊂ R are the prediction parameters. Here, Λ is the set of admissible
parameter values, i.e.

Λ = Λg :=
{
λ ∈ RN : X̂λ

d= X
}
.

Since FX ∈ C(R), we may rewrite the condition X̂λ
d= X as FX(X̂λ) d= FX(X) ∼ U([0, 1]).

The main idea of an excursion-based forecast is to look for X̂λ = g(X1, . . . , XN , λ̂), where

λ̂ = arginf
λ∈Λ

EFX (X, X̂λ).

Let us give some examples of g and Λg depending on the distribution class of FX . The function
g has to be chosen such that Λg 6= ∅.
Example 3.66 (a) If (X,X1, . . . , XN ) is infinitely divisible, then

g(X1, . . . , XN , λ) =
N∑
j=1

λjXj . (3.65)

(b) If (X,X1, . . . , XN ) is max-stable, then

g(X1, . . . , XN , λ) = max
j=1,...,N

λjXj . (3.66)
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Example 3.67 (a) Let (X,X1, . . . , XN ) be Gaussian with marginal distribution N(µ, σ2)
and Σ = (cov(Xi, Xj))Ni,j=1 and let g be as in (3.65). Then,

Λg = {λ ∈ RN : λᵀΣλ = σ2, λᵀe = 1}

is an ellipsoid of dimension N − 1, see also Section 3.5.1.

(b) Let (X,X1, . . . , XN ) be a subgaussian random vector with stability index α ∈ (0, 2) and
underlying i.i.d. standard Gaussian components. Moreover, let g be as in (3.65). Then,

Λg = {λ ∈ RN : ‖λ‖2 = 1} = Sn−1.

(c) Let (X,X1, . . . , XN ) be a SαS random vector with stability index α ∈ (0, 2), spectral
measure Γ of (X1, . . . , XN ) and scale parameter 1 for the marginal distributions. For g
as in (3.65), we have

Λg =

λ ∈ RN :
∫

SN−1

|〈s, λ〉|αΓ(ds) = 1

 ,
which is a closed subset of RN by the dominated convergence theorem. However, the
structure of this set may be quite complex.

(d) Let (X,X1, . . . , XN ) be a max-stable random vector with Fréchet(α)-marginals and tail
dependence function lN of (X1, . . . , XN ). For g as in (3.66), it holds that

Λg = {λ ∈ RN+ : lN (λα1 , . . . , λαN ) = 1}.

This is true, since

P( max
j=1,...,N

λjXj ≤ x) = exp
{
−x−αlN (λα1 , . . . , λαN )

}
, λ1, . . . , λN ≥ 0.

The prediction problem EFX (X, X̂λ)→ inf
λ∈Λ

can be rewritten in terms of the Gini metric, i.e.

G(X, X̂λ) = 1− 2
1∫

0

CX,X̂λ(x, x)dx→ inf
λ∈Λg

,

where CX,X̂λ(·, ·) is the copula of (X, X̂λ). Consequently, this yields

λ̂ = argsup
λ∈Λg

∫ 1

0
CX,X̂λ(x, x)dx. (3.67)

Example 3.68 (a) Let (X,X1, . . . , XN ) be Gaussian as in Example 3.67 (a) with mean
µ = 0 and variance σ2 = 1. In view of Section 3.5.1, the copula diagonal CX,X̂λ(x, x) is
equal to

CX,X̂λ(x, x) = x2 + 1
2π

sin−1(cλ)∫
0

exp
{
−(ϕ−1(x))2 1− sin θ

cos2 θ

}
dθ,

where ϕ−1(x) is the quantile function of N(0, 1) and

cλ = corr(X, X̂λ) =
N∑
j=1

λjcov(X,Xj).
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(b) Let (X,X1, . . . , XN ) be max-stable as in example 3.67 (d). Then, CX,X̂ is an extreme-
value copula with diagonal given by

CX,X̂(x, x) = xθλ , x ∈ [0, 1],

where θλ is the extremal coefficient of (X, X̂λ), i.e. θλ = l2(1, 1) with l2 being the tail
dependence function of (X, X̂λ). It follows that

1∫
0

CX,X̂λ(x, x)dx =
1∫

0

xθλdx = 1
θλ + 1 ,

hence the maximization problem∫ 1

0
CX,X̂λ(x, x)dx→ sup

λ∈Λg

is equivalent to the minimization problem

θλ → inf
λ∈Λg

.

As it was seen in Example 3.67, the structure of the admissible parameter set Λg may be quite
complex leading to non-linear non-convex optimization for finding λ̂ in Equation (3.67), which is
difficult to solve. A possible way out would be to replace the rigid condition FX(X̂λ) ∼ U([0, 1])
in the definition of Λg by an “approximate“ condition

ρ
(
P(FX(X̂λ) ≤ ·), FU [0,1](·)

)
≤ ε

for a small fixed ε > 0, where ρ(·, ·) is any handy metric on the space of cumulative distribution
functions on R.

For simplicity, we consider the 2-Wasserstein distance in place of ρ, which is defined as
follows.
Definition 3.69 Let Y1, Y2 be random variables with quantile functions F−1

1 and F−1
2 . For

p ≥ 1, the p-Wasserstein distance of Y1, Y2 is defined as

Wp(Y1, Y2) :=
(∫ 1

0

∣∣∣F−1
1 (x)− F−1

2 (x)
∣∣∣p dx)1/p

.

Note that, the Wasserstein distance acts on the space of distributions of random variables
rather than on L0(Ω,F ,P) itself. For p = 2 and Y2 ∼ U([0, 1]), we may rewrite

W 2
2 (Y1, Y2) =

∫ 1

0

(
F−1

1 (x)− x
)2
dx

=
∫ 1

0
F−1

1 (x)2dx− 2
∫ 1

0
xF−1

1 (x)dx+
∫ 1

0
x2dx︸ ︷︷ ︸

=1/3

(∗)=
∫ 1

0
y2dF1(y)−

∫ 1

0
ydF 2

1 (y) + 1
3

= 1
3 + EY 2

1 − E(Y1 ∨ Y ), (3.68)
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where P(Y1 ∨ Y ≤ y) = F 2
1 (y) and Y is an independent copy of Y1, and for the equality (∗) we

substituted y = F−1
1 (x). Integration by parts then yields

W 2
2 (Y1, Y2) = 1

3 +
∫ 1

0
F1(y)(F1(y)− 2y)dy. (3.69)

This allows us to rewrite the prediction problem (3.67) using the form of (3.64) of the excursion
metric and the approximative constraint W 2

2 (X, X̂) ≤ ε as

λ̂ = arginf
λ∈Λ

{
2E
[
FX(X ∨ X̂λ)

]
− E

[
FX(X̂λ)

]
+ γW 2

2 (X, X̂λ)
}
, (3.70)

where −1
2 in (3.64) is ommited and the Wasserstein distance W 2

2 (·, ·) is of the form (3.68) or
(3.69), where the set Λ ⊂ RN does not depend on g(., .) (it may be RN , [−M,M ]N or RN+ ).
The factor γ ≥ 0 weighs the significance of how close FX has to be to FX̂λ . Under certain
conditions, which are to be specified later, the infimum in (3.70) is attained, thus turning
arginf
λ∈Λ

to an argmin
λ∈Λ

. It follows that

W 2
2 (FX(X), FX(X̂λ)) =

E
[
F 2
X(X̂λ)

]
− E

[
FX(X̂λ) ∨ Y

]
+ 1

3 ,∫ 1
0 FFX(X̂λ)(y)

(
FFX(X̂λ)(y)− 2y

)
dy + 1

3 ,

where Y is an independent copy of FX(X̂λ) and FFX(X̂λ) is the cumulative distribution function
of FX(X̂λ).

Let us examine the existence of a solution to (3.70).
Theorem 3.70 Let the joint distribution of (X,X1, . . . , XN ) be absolutely continous. If the
following conditions are met

(I) Λ is compact in RN ,

(II) CX,X̂λ(x, x) is uniformly continuous on λ ∈ Λ,

(III) for each λ ∈ Λ, the distribution of X̂λ is absolutely continuous with probability density
function fX̂λ such that fX̂λ : Λ→ L1(R) is continuous on Λ with respect to the L1-norm,

then there exists a solution to minimization problem (3.70).

Proof Using Lemma 3.61, the target functional in (3.70) can be rewritten as

φ̄(λ) := 2− 2
∫ 1

0
CX,X̂λ(x, x)dx− E(Zλ)− γ

∫ 1

0
FZλ(y)dy, λ ∈ Λ, (3.71)

where Zλ := FX(X̂λ) and E[Zλ] =
∫ 1

0 P(Zλ>y)dy = 1−
∫ 1

0 FX̂λ(F−1
X (y))dy. As an integral with

parameter λ, i.e λ 7→
∫ 1

0 CX,X̂λ(x, x)dx, continuity on Λ follows from condition (II).
Furthermore, for any sequence {λk} ⊂ Λ with λk → λ0 ∈ Λ as k →∞, we have

sup
x∈R

∣∣∣∣FX̂λk (x)− FX̂λ0
(x)
∣∣∣∣ = sup

x∈R

∣∣∣∣∣∣
x∫

−∞

fX̂λk
(y)− fX̂λ0

(y)dy

∣∣∣∣∣∣
≤
∫
R

∣∣∣∣fX̂λk (y)− FX̂λ0
(y)
∣∣∣∣ dy → 0,
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as k → ∞ by condition (III). Therefore, FX̂λk (F−1
X (y)) is uniformly continuous on Λ with

respect to y ∈ [0, 1]. Applying the theorem on the continuity of integrals with parameters
proves the continuity of E[Zλ] on Λ.

Similarly, the term FZλ(y)(2y−FZλ(y)) is uniformly continuous on Λ with respect to y ∈ [0, 1],
so that also the third term in (3.71) is lies in C(Λ). Hence, the target functional φ̄ ∈ C(Λ)
attains its minimum on the compact set Λ.

Remark 3.71 The L1- continuity of fX̂λ in condition (III) means that∥∥∥∥fX̂λk − fX̂λ0

∥∥∥∥
1

=
∫
R

∣∣∣∣fX̂λk (y)− fX̂λ0
(y)
∣∣∣∣ dy → 0, k →∞,

for any sequence {λk} ⊂ Λ with λk → λ0 as k →∞. However, due to

1
2

∫
R

∣∣∣∣fX̂λk (y)− fX̂λ0
(y)
∣∣∣∣ dy = dTV (X̂λk , X̂λ0),

where dTV is the total variation distance, we see that this is equivalent to X̂λk
TV→ X̂λ0 as

k →∞.
Example 3.72 In the following we show that Theorem 3.70 holds true for any Gaussian
random vector (X,X1, . . . , XN ) with N(0, 1)-distributed marginals. Since Λg in Example 3.67
(a) is an ellipsoid in RN−1, it is sufficient to consider Λ = [−M,M ]N ⊃ Λg for M > 0 large
enough. Using the exact form of the copula diagonal CX,X̂λ(x, x) form Example 3.68, we may
see that ∣∣∣CX,X̂λ1

(x, x)− CX,X̂λ2
(x, x)

∣∣∣ ≤ 1
2σ

∣∣∣sin−1(cλ1)− sin−1(cλ2)
∣∣∣

uniformly on x ∈ [0, 1] due to the inequality

exp
{
−
(
ϕ−1(x)

)2 1− sin(θ)
cos2(θ)

}
≤ 1.

This shows condition (II) of Theorem 3.70.
To show the validity of condition (III), assume the covariance matrix Σ of (X1, . . . , XN ) to

be positive definite such that X̂λ ∼ N(0, λᵀΣλ) has a density for all λ 6= 0. This density is
obviously continuous on RN\{0} with respect to the L1-norm.
In the next result, we show that it is often sufficient to consider bounded spaces Λ only, e.g.

Λ =
{
λ ∈ RN : ‖λ‖2 ≤ µ

}
with µ > 0.

Lemma 3.73 Assume that there exists a λ0 ∈ Λ such that φ̄(λ0) < 1 + γ
3 . Let X̂λk

p→ ∞ as
k → ∞ for any sequence {λk} ⊂ Λ with‖λk‖2 → ∞ as k → ∞. Then, there exists a constant
M > 0 such that

min
λ∈Λ

φ̄(λ) = min
λ∈Λ:‖λ‖2≤M

φ̄(λ).

Proof Consider the target functional φ̄ in its form

φ̄(λ) = 2E
[
FX(X ∨ X̂λ)

]
− E

[
FX(X̂λ)

]
+ γ

(
E
[
F 2
X(X̂λ)

]
− E

[
FX(X̂λ ∨ Y )

]
+ 1

3

)
,
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where Y is an independent copy of X̂λ. The sequences {FX(X̂λ)}, {F 2
X(X̂λ)}, {FX(XX̂λ)} and

{FX(X̂λ ∨ Y )} are uniformly integrable since they are a.s. bounded by 0 and 1. Hence, their
expectations tent to 1 as λk → ∞, k → ∞, while X̂λk

p→ ∞, k → ∞, and since FX(y) → 1,
y →∞. Then, it follows that

φ̄(λk)→ 1 + γ

3 , k →∞.

Choosing M > 0 such that φ̄(λk) > φ̄(λ0) for all k ∈ N such that ‖λk‖2 > M concludes the
proof of this lemma.

Example 3.74 Assume there exists a λ0 ∈ Λ such that

(a) X̂λ0 = X a.s. This may happen for some prediction function g, if X = Xj0 for some
j0 ∈ {1, . . . , N}. Then,

φ̄(λ0) = 21
2 −

1
2 + γ

(1
3 −

1
2 + 1

3

)
= 1

2 + γ
1
6 < 1 + γ

3
for all γ ≥ 0.

(b) X̂λ0 and X are stochastically independent. Then,

P
(
FX(X ∨ X̂λ0) ≤ x

)
= P

(
FX(x) ∨ FX(X̂λ0)︸ ︷︷ ︸

=Y1

≤ x
)

= P (FX(X) ≤ x)P (Y1 ≤ x) = xFY1(x)

and

2E
[
FX(X ∨ X̂λ0)

]
− E [Y1] = 2

1∫
0

xd(xFY1(x))−
1∫

0

xdFY1(x)

= 2

1−
1∫

0

xFY1(x)dx

− 1 +
1∫

0

dFY1(x)

= 1 +
1∫

0

FY1(x)(1− 2x)dx

= 1 +
1∫

0

(
FY1(x)− FY1

(1
2

))
(1− 2x)︸ ︷︷ ︸

≤0

dx < 1

by integration by parts, since FY1(1
2)
∫ 1

0 (1− 2x)dx = 0. Since

E
[
F 2
X(X̂λ0)

]
− E

[
FX(X̂λ0) ∨ Y

]
< 0,

we get φ̄(λ0) < 1 + γ
3 for all γ ≥ 0.

Example 3.75 The condition X̂λk
p→ ∞ as k → ∞ with ‖λ‖ → ∞, λk = (λk(1), . . . , λk(N))

is satisfied for Λ = R+
n and

X̂λ =
N∑
j=1

λk(j)Xj
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or
X̂λ = max

j=1,...,N
λk(j)Xj

if Xj ≥ 0 a.s.

3.5.6 Excursion-based prediction of stationary random fields
Let X = {X(t), t ∈ Rd} be a strictly stationary measurable random field with marginal distri-
bution Fθ0 ∈ {Fθ, θ ∈ Θ}, where {Fθ, θ ∈ Θ} is a parametric family of absolutely continuous
distributions and Θ ⊂ Rk is its parameter space. The distribution Fθ may be heavy-tailed with
no finite moments at all.
Let X be observed on a set of locations T0 = W0 ∩Zn, where W0 ⊂ Rd is a compact set and

Zh = h1Z × · · · × hdZ is a d-dimensional grid with mesh sizes h = (h1, . . . , hd) ∈ (0,∞)d. We
denote the observation of X on T0 by XT0 = {X(t), t ∈ T0}.

For a location t ∈ Zn, t ∈W0, the goal is to predict X(t) from the so-called forecast sample
XTf = {X(t1), . . . , X(tN )}, Tf = {t1, . . . , tN} ⊂ Zh. As before, we are looking for a predictor
X̂λ of X(t) of the form X̂λ = g(λ,XTf ), λ ∈ Λ ⊂ RN , such that

λ̂ = argmin
λ∈Λ

{ =EFθ0 (X(t),X̂λ)︷ ︸︸ ︷
2E
[
Fθ0(X(t) ∨ X̂λ)

]
− E

[
Fθ0(X̂λ)︸ ︷︷ ︸

=Zλ

]
− 1

2 +γW 2
2 (FZλ , FU )

}
, (3.72)

where FU is the cumulative distribution function of U ∼ U([0, 1]). Furthermore, in the above
we have

W 2
2 (FZλ , FU ) =


E
[
Z2
λ

]
− E [Zλ ∨ Y ] + 1

3
1∫
0
FZλ(y)(FZλ(y)− 2y)dy + 1

3
, (3.73)

where Y is an independent copy of Zλ with cumulative distribution function FZλ .
Theorem 3.76 (Weak consistency): Let the random field X be absolutely continuous.
Assume that there exists a λ̃k ∈ Λ such that X̂λ̃k

= X(tk) a.s. for all k = 1, . . . , N , and
min

j=1,...,N
‖tj − t‖2 → 0 as N →∞. Then,

X̂λ(t) p→ X(t)

as N →∞.

Proof Let t̃N = argmin
j=1,...,N

‖tj − t‖2 and λ̃ ∈ Λ such that X̂λ̃ = X(t̃N ) a.s. Then,

EFθ0

(
X(t), X̂λ̂

)
+ γW 2

2

(
FZλ̂ , Fη

)
≤ EFθ0

(
X(t), X̂λ̃

)
+ γW 2

2

(
FZλ̃ , Fη

)
= EFθ0

(
X(t), X(t̃N ))

)
+ γ · 0→ 0

as N →∞, since the left-hand side is a minimum of all λ ∈ Λ and X̂λ̃ = X(t̃N ) d= X(t) due to
stationarity implies that W 2

2 (FZλ̃ , Fn) = 0. The last convergence holds since

EFθ0

(
X(t), X(t̃N )

)
= E

[∣∣Fθ0(X(t)))− Fθ0(X(t̃N ))
∣∣]
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and
Fθ0(X(t̃N )) p→ Fθ0(X(t))

due to (X(t̃N )) p→ (X(t)) as N → ∞ and Fθ0 ∈ C(R). The L1-convergence of Fθ0(X(t̃N ))
to Fθ0(X(t)) holds since

{
Fθ0(X(t̃N ))− Fθ0(X(t))

}
N≥1 is uniformly integrable due to its a.s.

boundedness.

In order to compute the forecast X̂λ̃ numerically, we first estimate θ0 by a statistic θ̂, and
then use Fθ̂ as a plug-in estimate of Fθ. Next, we discretize all expectations and integrals in
(3.72) to minimize the functional

φ̄(λ) = 1
n

n∑
j=1

Qj → min
λ∈Λ

, (3.74)

where

Qj(λ) = 2Fθ̂
(
X(t+ sj) ∨ g(λ,XTf+sj )

)
− Fθ̂

(
g(λ,XTf+sj )

)
+ γ

(
F 2
θ̂

(
g(λ,XTf+sj )

)
− Fθ̂

(
g(λ,XTf+sj )

)
∨ Yj

)
, (3.75)

for j = 1, . . . , n, γ ≥ 0. Here, it holds that {s1, . . . , sn} = {s ∈ Zn : s+Tf ∪{t} ⊂ T0}, and the
sets Tf + sj are called learning samples, j = 1, . . . , n, see Figure 3.12.
The random variables Yj are independent copies of Fθ̂

(
g(λ,XTf+sj )

)
. In practice, the sample

Y1, . . . , Yn may be obtained from(
Fθ̂

(
g(λ,XTf+s1), . . . , Fθ̂

(
g(λ,XTf+sn)

)))
by resampling, e.g. bootstrapping. Note that in (3.75), we used the first variant of the 2-
Wasserstein distance from (3.73). Alternatively, the second variant can be used as well, dis-

cretizing the integral
1∫
0
. . . dy therein by a sum.

To guarantee that

1
n

n∑
j=1

Qj(λ)→ EFθ0
(X(t), X̂λ) + γ ·W 2

2 (FZλ , Fn) a.s.

as n→∞, we require the ergodicity of X together with strong consistency of θ̂, i.e. θ̂ → θ0 a.s.
as n→∞. The minimization problem in (3.74) may be solved using the stochastic subgradient
descent method.

3.5.7 Stochastic approximation and gradient descent

Our functional φ̄(λ) = 1
n

∑n
j=1Qj(λ) in Equation (3.74) can be seen as φ̄(λ) = EQξ(λ), where

λ ∈ Λ, ξ ∼ U({1, . . . , n}). The procedures of stochastic optimization (the so-called procedures
of Robbins-Monro [35]) seek a solution to this problem as

λ(l+1) = ΠΛ
[
λ(l) − ηl · ϕ(jl, λ(l))

]
, l ∈ N0, (3.76)
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t1 + s1, . . . , tN + s1 t1 + s2, . . . , tN + s2
. . . t1 + sn, . . . , tN + sn t1, . . . , tN

XTf+s1 XTf+s2
. . .

XTf+sn XTf

sample 1 sample 2 sample n sample
Learning Learning Learning Prediction

Fig. 3.12: Prediction and learning samples XTf+sj = {X(t1 + sj), . . . , X(tN + sj)}, j =
0, 1, . . . , n (s0 = 0 for d = 1).

where ΠΛ [·] is a metric (back) projection onto the space Λ, ηl > 0 is a step length factor such
that ∞∑

l=1
ηl =∞ and

∞∑
l=1

η2
l <∞, (3.77)

jl is an independent realization of ξ, i.e., a member chosen randomly from {1, . . . , n}, and (for
the case of stochastic (sub-)gradient of Qj(.)) ϕ(j, λ) = ∇∗Qj(λ) is the (sub-)gradient of Qj(·)
with respect to λ ∈ Λ ⊂ RN . The difference to the classical batch (sub-)gradient descent lies in
the use of φ(j, λ) = φ̄(λ) in the classical case, which does not depend on a realization j of ξ.
Note that a sequence {ηl} satisfying the conditions (3.77) can be for example ηl = 1

l . The
iterations in (3.76) stop whenever |λ(l∗+1) − λ(l∗)| < δ for some small threshold δ > 0. Then,
the solution λ̂ to the minimization problem (3.74) may be chosen to be either

λ̂ = argmin
l=0,...,l∗

φ̄(λ(l))

or

λ̂ = 1
l∗ − l0

l∗−1∑
l=l0

λ(l),

the so-called Polyak-Ruppert averaging, which excludes the burn-in period of length l0.
It is well known that the convergence of all gradient-like descent methods heavily depends

on the right choice of the initial value λ(0). Hence, we recommend to choose λ(0) to be the
outcome of another optimization procedure of the minimization problem

φ̄(λ)→ min
λ∈Λ

,

e.g. simulated annealing genetic search, etc. In order to avoid the back-projection ΠΛ for
Λ = RN+ , it is reasonable to use λ(l) =

(
(λ(l)

1 )2 . . . (λ(l)
N )2

)
in the computation of the gradients.

Let us consider the convergence of stochastic (sub-)gradient descent.
Theorem 3.77 Let Λ ⊂ RN be compact. Assume that Qj , j = 1, . . . , n, are piecewise C2(Λ)
and bounded on Λ, φ̄(λ) ≥ 0 almost everywhere on Λ, and there exists a unique λ∗ ∈ Λ such
that ∇φ̄(λ∗) = 0, φ̄(λ∗) = φ̄(λ), λ ∈ Λ. Assume that for i, j ∈ {1, . . . , N} it holds that

〈∇Qi(λ),∇Qj(λ)〉 ≥ 0 (3.78)

almost everywhere on Λ and that this inequality is strict for at least one pair (i, j) ∈ {1, . . . , n}2.
Then, the stochastic gradient descent

λ(l+1) − λ(l) = −ηl∇Qξ(λ(l)), ξ ∼ U({1, . . . , n}) (3.79)
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with a sequence {ηl} satisfying (3.77) converges a.s., i.e.

λ(l) → λ∗ a.s.,

as l→∞.

Proof For φ̄ ∈ C2(Λ) a.e. on Λ its Taylor expansion is given by

φ̄
(
λ(l+1)

)
−φ

(
λ(l)

)
=
〈
∇φ̄

(
λ(l)

)
, λ(l+1) − λ(l)

〉
+ 1

2
(
λ(l+1) − λ(l)

)ᵀ
Hφ̄

(
λ(l)

) (
λ(l+1) − λ(l)

)
,

where 〈·, ·〉 denotes the Euclidean scalar product in RN and λ̃(l) = λ(l) + δ(λ(l+1) − λ(l)),
δ ∈ (0, 1). Furthermore, Hφ̄(λ̃(l)) = 1

n

∑n
j=1HQj(λ̃(l)) is the Hessian matrix of φ̄ at λ̃(l).

Then, the above in combination with (3.79) yields

φ̄
(
λ(l+1)

)
− φ

(
λ(l)

)
= 1
n

n∑
j=1

ηl

(
−
〈
∇Qj

(
λ(l)

)
,∇Qξ

(
λ(l)

)〉
+ ηl

2 ∇Qξ
(
λ(l)

)
H∇Qj

(
λ̃(l)

)
∇Qξ

(
λ(l)

))
. (3.80)

Due to the condition
∑∞
l=1 η

2
l < ∞ we have ηl → 0 as l → ∞. Additionally, since Qj ∈ C2(Λ)

piecewise, the gradient and Hessian matrix of Qj , i.e. ∇Qj and HQj , are bounded on the
compact set Λ for all j = 1, . . . , n.
From Equation (3.78) we get

φ̄
(
λ(l+1)

)
− φ̄

(
λ(l)

)
≤ 0

as l→∞. Since φ̄(λ) ≥ 0 a.e. on Λ, it follows that there exists an a.s. limit, which we denote
by liml→∞ φ̄(λ(l)) := φ̄∞ a.s.
It remains to show that

φ̄∞ = min
λ∈Λ

φ(λ).

Since ξ ∈ U{1, . . . , n}, it holds that φ̄∞ is a random variable with E[φ̄∞] < ∞ by boundness
on Λ. Thus,

E
[
φ̄∞
]

=
∞∑
l=0

E
[
φ̄(λ(l+1))− φ̄(λ(l))︸ ︷︷ ︸
≤0 for sufficiently large l

]
+ φ̄

(
λ(0)

)
,

which implies
∞∑
l=0

E
[
φ̄
(
λ(l)

)
− φ̄

(
λ(l+1)

)]
<∞.

Plugging-in (3.80) and dissolving the expectation with respect to ξ yields
∞∑
l=0

E
[
φ̄
(
λ(l)

)
− φ

(
λ(l+1)

)]
= 1
n2

∞∑
l=0

n∑
i,j=1

(
ηl
〈
∇Qi

(
λ(l)

)
,∇Qj

(
λ(l)

)〉
− η2

l

2 ∇Qj
(
λ(l)

)ᵀ
HQi

(
λ̃(l)

)
∇Qj

(
λ(l)

))

=
∞∑
l=0

(
ηl
∥∥∥∇φ̄ (λ(l)

)∥∥∥2

2
− η2

l

2 ∇φ̄
(
λ(l)

)ᵀ
Hφ̄

(
λ̃(l)

)
∇φ̄

(
λ(l)

))
.
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Since ∇φ̄ and Hφ̄ are bounded on Λ and
∑∞
l=1 η

2
l <∞, the second term in the sum is bounded

a.s. Hence, also the first term has to be bounded a.s., and since
∑∞
l=1 ηl =∞, it has to hold

‖∇φ̄(λ(l))‖2 → 0 a.s.

as l→∞.
It follows that λ∗ = liml→∞ λ

(l) is a point of extremum of φ̄. Since φ̄(λ(l)) ↓ φ̄∞ and there
exists a unique minimum of φ̄ by assumption, we have φ̄∞ = min

λ∈Λ
φ̄(λ).

Now let us turn to the computation of the forecast X̂λ. Assume that the marginal distribution
Fθ has a density fθ, and that the random vectors (X(t+ sj), X(t1 + sj), . . . , X(tN + sj)) , j =
1, . . . , n have joint densities. Then, it is reasonable to assume

P(X(t+ sj) = g(λ,XTf+sj )) = 0 and P(Yj = fθ̂g(λ,XTf+sj )) = 0

for j = 1, . . . , n, as well as

P(g(λ,X(Tf + si)) = g(λ,XTf+sj )) = 0

for i, j = 1, . . . , n.
As a consequence, it becomes easy to calculate the sub-gradient ∇∗Qj , i.e.

∇∗Qj =
(
2 · 1(X(t+ sj) < g(λ,XTf+sj ))− 1

)
fθ̂(g(λ,XTf+sj )) · ∇∗g(λ,XTf+sj )

+ γ
(
2Fθ̂(g(λ,XTf+sj ))− 1(g(λ, YTf+sj ) < g(λ,XTf+sj ))

)
· fθ̂(g(λ,XTf+sj ))∇∗g(λ,XTf+sj )

− γ · 1(g(λ, YTf+sj ) ≥ g(λ,XTf+sj ))fθ̂(g(λ, YTf+sj ))∇∗g(λ, YTf+sj ),

where YTf+sj is an independent copy of XTf+sj ) for all j = 1, . . . , n. The subgradients ∇∗g
depend on the form of g, i.e. we have ∇∗g(λ,XTf+sj ) = XTf+sj for g(λ,XTf ) =

∑N
i=1 λiX(ti)

and

∇∗g(λ,XTf+sj ) =
(
X(ti + sj)1(λiX(ti + sj) = max

k=1...N
λkX(tk + sj)), i = 1, . . . , N

)
for g(λ,XTf ) = max

i=1,...,N
λiX(ti).

3.5.8 Excursion-based prediction of max-stable random fields
Let us apply the above theory to the extrapolation of stationary max-stable random fields from
Section 1.3. Let X = {X(t), t ∈ Rd} be a stationary ergodic max-stable random field with
Fréchet(α)-marginal distributions, α > 0. Let

X̂ = max
j=1,...,N

λjX(tj)

be the predictor of X(t) with λ1, . . . , λN ≥ 0.
Lemma 3.78 The pairwise extremal coefficient θλ of (X(t), X̂(t)) is given by

θλ = lN+1(1, λα1 , . . . , λαN ),

where lN+1(·) is the tail dependence function of (X(t), X(t1), . . . , X(tN )).



84 3 Prediction of stationary random fields
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(a) Interpolation of a moving average X1 with Cauchy distributed marginals: True trajectory
X1(t) (black), predicted trajectories X̂1,u (red) and X̂1,c (blue)
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(b) Extrapolation of a moving average X1 with Cauchy distributed marginals: True trajectory
X1(t) (black), predicted trajectories X̂1,u (red) and X̂1,c (blue)
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(c) Interpolation of a moving average X1 with Lévy distributed marginals: True trajectory
X0.5(t) (black), predicted trajectories X̂0.5,u (red) and X̂0.5,c (blue)
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(d) Extrapolation of a moving average X1 with Lévy distributed marginals: True trajectory
X0.5(t) (black), predicted trajectories X̂0.5,u (red) and X̂0.5,c (blue)

Fig. 3.13: Excursion based interpolation and extrapolation.
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Proof It is known that

lim
x→∞

P
(
X̂(t) > x | X(t) > x

)
= 2− θλ.

Since P(X(t) > x) = 1− e−x−α
, x ∈ R and

P
(
X̂(t) > x,X(t) > x

)
= 1− P(X̂(t) ≤ x)− P(X(t) ≤ x) + P(X̂(t) ≤ x,X(t) ≤ x)

= 1− 2e−x−α + e−lN+1(1,λα1 ,...,λαN )x−α
,

we have

2− θλ = lim
x→∞

P(X̂(t) > x,X(t) > x)
P(X(t) > x)

= lim
x→∞

1− 2e−x−α + e−lN+1(1,λα1 ,...,λαN )x−α

1− e−x−α

(∗)= lim
x→∞

e−x
−α
(
2− lN+1(1, λα1 , . . . , λαN )e−(lN+1(1,λα1 ,...,λαN )−1)x−α

)
e−x−α

= 2− lN+1(1, λα1 , . . . , λαN )

where the equality (∗) follows from l’Hopital’s rule. The assertion follows immediately.

Denote by lN the tail-dependence function of (X(t1), . . . , X(tN )).
Corollary 3.79 Let Λg = {λ ∈ RN+ : lN (λα1 ), . . . , λαN ) = 1}, see Example 3.67. Then, the
optimization problem θλ → inf

λ∈Λg
from Example 3.68 reads

lN+1(1, x)→ min
x∈RN+ : lN+1(0,x)=1

, (3.81)

where x = (x1, . . . , xN ) with xi = λαi , i = 1, . . . , N .

Proof It is clear that lN (x) = lN+1(0, x) for all x ∈ Rd. The constraint lN (x) = 1 is equivalent
to X̂(t) d= X(t). The remaining part is trivial.

For α > 1 the above result can be interpreted geometrically. To do so, the so-called D-norm
needs to be introduced.
Definition 3.80 Let (Y1, . . . , YN ) be a random vector with components Yj ≥ 0 a.s. and
E[Yj ] = 1, j = 1, . . . , N . Then,

‖x‖D := E
[

max
j=1,...,n

|xj |Yj
]
, x ∈ RN ,

defines the so-called D-norm with a generator (Y1, . . . , YN ).
Exercise Show that ‖ · ‖D is a norm on the space RN .
For Y1, . . . , YN ∼ Fréchet(α), α > 1, the D-norm with generator (E[Y1])−1(Y1, . . . , YN ) is

given by

‖x‖D = E
[

max
j=1,...,N

xj
Yj

E(Yj)

]
= Γ−1

(
1− 1

α

)
E [x1Y1 ∨ · · · ∨ xNYN ] .
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Lemma 3.81 Let (Y1, . . . , YN ) be a max-stable random vector such that Yj = X(tj), j =
1, . . . , N , generating the above D-norm. For all λ = (λ1, . . . , λN ) ∈ RN+ , it holds that

(a) ‖λ‖D = l
1/α
N (λα1 , . . . , λαN )

(b) ‖.‖D is convex.

(c) If X(t1), . . . , X(tN ) are stochastically independent, then ‖λ‖D = ‖λ‖α =
(∑N

j=1 λ
α
j

)1/α
.

Proof (a) By homogeneity of lN , it holds that

P(λ1Y1 ∨ · · · ∨ λNYN ) = P(λ1Y1 ≤ x, . . . , λNYN ≤ x) = exp{−x−αln(λα1 , . . . , λαN )},

i.e.
max

j=1,...,N
λjYj ∼ Fréchet(α, 0, lN (λα1 , . . . , λαN )).

Then,

‖λ‖D = Γ
(

1− 1
α

)−1
E [λ1Y1 ∨ · · · ∨ λNYN ] = l

1/α
N (λα1 , . . . , λαN ).

(b) This follows from convexity of lN , see Proposition 1.6.

(c) This follows from Exercise 1.7.

Remark 3.82 For λ ∈ RN+ , let λ̃ = (1, λ) ∈ RN+1
+ . If α > 1, then the minimization problem

(3.81) rewrites as
‖λ̃‖D → min

λ∈RN+ :‖(0,λ)‖D=1
,

which means that the D-norm on RN+1 generated by (X(t), X(t1), . . . , X(tN )) is minimized on
the positive part of N -dimensional unit ball ‖(0, λ)‖D = 1.
In this case the predictor (3.72) can be rewritten as

λ̂ = argmin
λ∈RN+

{
2E
[
e−(X(t)∨X̂(t))−α]− E

[
e−X̂(t)−α]+ γ

(1
3 − E

[
e−X̂(t)−α]+ E

[
e−2X̂(t)−α])− 1

2

}
,

with γ ≥ 0, where Y is an independent copy of e−X̂(t)−α . Taking the Wasserstein metric from
Equation (3.73) into account, it follows that

λ̂ = argmin
λ∈RN+

{
2E
[
e−(X(t)∨X̂(t))−α]− E

[
e−X̂(t)−α]− 1

2 + γ

(1
3 +

∫ 1

0
FZλ(u)(FZ(u)− 2u)du

)}
,

(3.82)

where Zλ = e−(X̂(t))−α . Using a substitution xj = λαj , j = 1, . . . , N , again, we may conclude
with the following lemma.
Lemma 3.83 The minimization problem in (3.82) is equivalent to

2lN+1(1, x)
lN+1(1, x) + 1 −

lN+1(0, x)
lN+1(0, x) + 1 + γ

3
(lN+1(0, x)− 1)2

(lN+1(0, x) + 1/2)(lN+1(0, x) + 2) → min
x∈RN+

,

where x = (x1, . . . , xN ) and lN+1 is the tail dependence function of (X(t), X(t1), . . . , X(tN )).
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Proof Set t0 = t and λ0 = 1. Then, clearly it holds that

X(t) ∨ X̂(t) = max
j=0,...,N

λjX(tj).

Computing the cumulative distribution function of Zλ yields

FZλ(u) = P
(
e−X(t)−α ≤ u

)
= P

(
X̂(t) ≤ (− log u)−1/α

)
= ulN (λα1 ,...,λαN ), u ∈ [0, 1].

Similarly, we have

P
(
e−(X(t)∨X̂(t))−α ≤ u

)
= ulN+1(1,λα1 ,...,λαN ), u ∈ [0, 1].

As a consequence

E
[
e−(X(t)∨X̂(t))−α] =

1∫
0

(
1− ulN+1(1,

=x︷ ︸︸ ︷
x1, . . . , xN )

)
du = lN+1(1, x)

lN+1(1, x) + 1 ,

and similarly
E
[
e−X̂

α
λ

]
= lN+1(0, x)
lN+1(0, x) + 1 .

The squared W2-distance rewrites as

W 2
2 (FZλ , Fu) = 1

3 +
1∫

0

(
u2lN+1(0,x) − 2ulN+1(0,x)+1

)
du

(∗)= 1
3 + 1

2lN+1(0, x) + 1 −
2

lN+1(0, x) + 2

= 1
3

(lN+1(0, x)− 1)2

(lN+1(0, x) + 1/2)(lN+1(0, x) + 2) ,

where the equality (∗) follows from U ∼ U([0, 1]).

Let us show the existence of the forecast λ̂ from Equation (3.82).
Theorem 3.84 The minimization problem (3.82) has a solution.

Proof The random vector (X(t0), X(t1), . . . , X(tN )) is max-stable with Fréchet(α)-marginals,
and hence absolutely continuously distributed. Since lim

x→0
e−x

−α = 0 and lim
‖λ‖2→0

X̂(t) = 0 a.s.,

there exists a λ0 ∈ RN+ such that

Ψ(λ) = 2E
[
e−(X(t)∨X̂(t))−α]− E

[
e−X̂(t)−α]+ γ

(1
3 + E

[
e−(2X̂(t))−α]− E

[
e−(X̂(t))−α ∨ Y

])
< 1 + γ

3
holds.

Together with the a.s. divergence lim
‖λ‖2→∞

X̂(t) = ∞ a.s. and Lemma 3.73, the existence

of M > 0 follows, i.e. min
λ∈RN+

Ψ(λ) = min
λ∈[0,M ]N

Ψ(λ), and thus condition (I) of Theorem 3.70 is

satisfied.
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Since
X̂(t) ∼ Fréchet(α, 0, l1/αN (λ1/α

1 , . . . , λ
1/α
N )︸ ︷︷ ︸

=σ(λ,α)

),

its density is given by

fX̂(t)(x) = ασα(λ, α)
xα+1 exp

{
−
(
σ(λ, α)
x

)α}
.

Note that fX̂(t) is bounded from above uniformly in λ ∈ [0,M ]N .
By the dominated convergence theorem, we get (denoting X̂λ := X̂(t))

lim
‖h‖2→0

∥∥∥fX̂λ − fX̂λ+h

∥∥∥
L1

= lim
‖h‖2→0

∫
R

∣∣∣fX̂λ − fX̂λ+h

∣∣∣ dx =
∫
R

lim
‖h‖2→0

∣∣∣fX̂λ − fX̂λ+h

∣∣∣ = 0.

Since the tail dependence function lN (·) is convex, it is also continuous, and consequently fX̂λ
is continuous in λ. Thus, condition (III) of Theorem 3.70 is satisfied.

Since the copula CX(t),X̂(t)(x, x) = xθλ , where θλ = l2(1, 1) is the pairwise extremal coef-
ficient of (X(t), X̂(t)), θλ is continuous on [0,M ]N because of the continuity of l2. Hence,
1∫
0
CX(t),X̂(t)(x, x)dx = 1

θλ+1 is continuous as well, and the application of Theorem 3.70 resumes

this proof.

Now let us discretize the expectations in Ψ(λ) and write the functional φ̄(λ) = 1
n

n∑
j=1

Qj(λ)

with

Qj(λ) := 2 exp{−(X(t+ sj) ∨ g(λ,XTf+sj ))−α} − exp{−g−α(λ,XTf+sj )}

+ γ

(1
3 − exp{−g−α(λ,XTf+sj )} ∨ Yj + exp{−2g−α(λ,XTf+sj )}

)
, j = 1, . . . , n,

where Yj is an independent copy of exp{−g−α(λ,XTf+sj )}. To implement the stochastic sub-
gradient descent, we also need the subgradients

∇∗Qj(λ) =
(
∇q(l)

j (λ)−∇p(l)
j (λ), l = 1, . . . , N

)ᵀ
,

where

∇q(l)
j (λ) =

(
2 · 1 (X(t+ sj) < λlX(tl + sj))− 1

− γ · 1
(

max
i=1,...,N

λiX̃(ti + sj) < max
i=1,...,N

λiX(ti + sj)
)

+ 2γ exp{−(λlX̃(tl + sj))}
)

× f(λlX̃(tl + sj)) ·X(tl + sj) · 1
(
λlX̃(tl + sj) = max

i=1,...,N
λiX(ti + sj)

)
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and

∇p(l)
j (λ) = γ · 1

(
max

i=1,...,N
λiX̃(ti + sj) > max

i=1,...,N
λiX(ti + sj)

)
× f(λlX̃(tl + sj)) · 1

(
λlX̃(tl + sj) = max

i=1,...,N
λiX̃(ti + sj)

)
for j = 1, . . . , n, l = 1, . . . , N , where (X̃(t1 + sj), . . . , X̃(tN + sj)) is an independent copy of
(X(t1 + sj), . . . , X(tN + sj)) for all j = 1, . . . , n and

f(x) = αx−1−αe−x
−α
, x > 0,

is the probability density function of the Fréchet(α) distribution.
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3.6 Conditional simulation of stationary Gaussian random fields
Let X = {X(t), t ∈ T}, T ⊂ Rd, be a stationary Gaussian random field with mean zero,
var(X(t)) ≡ 1 and covariance function C(t) = cov(X(s), X(t)). Our goal is to simulate X(t)
at locations t /∈ {t1, . . . , tN} ⊂ W , where W is a compact observation window, provided that
observations X(t1) = y1, . . . , X(tN ) = yN are given.
Let X̂ = {X̂(t), t ∈W} be the simple Kriging prediction of X in W , compare Section 3.2.1.

By theorem 3.16 (iv), the random fields X̂ and X − X̂ are stochastically independent. Indeed,
in the Gaussian case the orthogonality of X̂(t) and X(t)− X̂(t) means independence, for any
t ∈W , since X̂(t) and X(t)− X̂(t) are jointly Gaussian as linear combinations of observations
X(tj), j = 1, . . . , N . The same reasoning can be applied to arbitrary linear combinations of
values of X̂(t) and X(t)− X̂(t), t ∈W .

Therefore, it holds thatX(t) = (X(t)−X̂(t))+X̂(t), where both components are independent
and Gaussian. This leads to the following algorithm to simulateX(t) conditional onX(tj) = yj ,
j = 1, . . . , N :

1. Simulate a Gaussian random field with mean 0 and covariance function C(·) at locations
t ∈W . Denote the resulting field by {X∗(t), t ∈W}.

2. Compute the simple Kriging estimates of {X∗(t), t ∈ W} on the sample {X∗(tj), j =
1, . . . , N}. Denote the resulting field by

{
X̂∗(t) =

∑N
j=1 λ

∗
jX
∗(tj), t ∈W

}
.

3. Return X̃(t) = X̂(t) +X∗(t)− X̂∗(t), t ∈W .

The field {X̃(t), t ∈ W} is a conditional simulation of X provided that X(tj) = yj . Indeed,
since simple Kriging is exact, it holds that X̂∗(tj) = X∗(t) and X̂(tj) = X(tj) = yj for all
j = 1, . . . , N . Moreover, X̃ is obviously Gaussian as a sum of two independent Gaussian
components X̂ and X∗ − X̂∗.
Remark 3.85 For points t lying far away from t1, . . . , tN one can expect X̃(t) ≈ X∗(t), i.e.,
the simulation becomes uncondiditonal. Indeed, if C(t) → 0 as ‖t‖2 → ∞, the simple Kriging
weights λj in X̂(t) =

∑N
j=1 λjYj and λ∗j of X̂∗(t) =

∑N
j=1 λ

∗
jX
∗(tj) are very small, which yields

X̂(t) ≈ 0 and X̂∗(t) ≈ 0.
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(a) A 50 time steps’ forecast (dashed blue line), together with its corresponding excursion metric (red
line), of a Brown-Resnick process (blue line). After observing 110 values of B, the predictor B̂ used
ten learning samples of size eleven. Step-sizes for the stochastic gradient descent were given by the
harmonic series {1/n}n∈N. The underlying process Y of the Brown-Resnick process was a standard
Brownian motion.
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(b) A 50 time steps’ forecast (dashed blue line), together with its corresponding excursion metric (red
line), of an extremal Gaussian process (blue line). After observing 110 values of G, the predictor Ĝ
used ten learning samples of size eleven. Step-sizes for the stochastic gradient descent were given by
the harmonic series {1/n}n∈N. The underlying process Y of G was a Gaussian process with Cauchy
covariance function C(t) = exp(−|t|0.01).

Fig. 3.14: Forecast of a Brown-Resnick and extremal Gaussian process
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Fig. 3.15: A ten steps’ forecast of random fields of each type in both directions t1 and t2. After
observing true values of the random fields at locations t ∈ {1, . . . , 50} × {1, . . . , 50},
the predictor extended the random surfaces to t ∈ {1, . . . , 60} × {1, . . . , 60}.
Step-sizes for the stochastic gradient descent were given by the harmonic series
{1/n}n∈N.
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(a) The left plot shows the yearly maximum of daily rainfall in Munich, Germany from 1879 to 2022.
The right plot shows the corresponding empirical c.d.f. F̄ (blue line) and the ML-estimated
Fréchet(α̂, µ̂, σ̂) c.d.f. (red line) with α̂ = 7.7551, µ̂ = −545.0173 and σ̂ = 959.8184,
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(b) Forecasts for the annual daily rainfall maxima from 2013 to 2022. All data from 1883-2012 was used
in learning samples. The real data is shown by the blue line. The red lines mark the maximum and
minimum of 100 forecasts using the max-stable predictor with bootstrap. The green line yields the
forecast using the alternative formulation. For every extrapolation 12 learning samples of size 10
containing data from 1883-2002 and a forecast sample containing data from 2003-2012 were used.

Fig. 3.16: Forecast of Munich daily maximums of rainfall
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random field, 13

adjacency matrix, 53
asymptotic normal, 15

B-Splines, 48
Bessel function

of the first kind of order ν, 42
Brown-Resnick random field, 8
Brownian Lévy field, 6

Cauchy distribution, 12
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classical batch (sub-)gradient descent, 81
complete dependence, 8
conditional bias reduction

universal Kriging, 46
conditional unbiasedness, 33
copula, 67

degree of a vertex, 53
drift, 34

estimation, 45
estimation variance, 45

drift correction, 46

ellipsoid constraint, 61
empirical quantile, 54
energy, 50
exactness

universal Kriging, 46
excursion pseudo metric, 67
excursion set, 58
extremal coefficient, 8

Extremal Gaussian random field, 9
extreme value distribution, 7

Fejér kernel, 19
Fisher-Tippett-Gnedenko, 7
forecast

excursion-based, 73
fractional Brownian field, 5
fractional Brownian motion, 6
Fréchet distribution, 7

Fréchet(α), 7
standard, 7

geoadditive regression, 47
geometric anisotropy, 35
geostatistics, 1
Gini metric, 72
group of

all rigid motions, 3
rotations SOd, 2
translations, 2

Gumbel distribution, 7

homogeneous of order 1, 8
homoscedasticity, 33
Hurst index, 6

increments, 3
infinitely divisible, 58
infinitely divisible class, 58
intrinsic stationarity, 3

of order two, 3
isotropic, 2

Gaussian fields, 5

Kriging, 30

Lagrange function, 43
Lagrange multiplier, 37
law of total variance, 39
learning samples, 80
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level set, 58
linear regression, 24

Gaussian, 32
long memory, 4
Lorenz curve, 72
loss function, 57
Lévy distribution, 12

madogram, 71
Markov random field, 52
max-stable, 6
mean-square consistent, 15
median, 54
median regression, 54
modified Bessel function

of the third kind, 42
motion invariant, 3

Gaussian fields, 5

normal distribution, 12
nugget effect, 35

observations, 14
ordinary Kriging estimate, 37
orthogonality

universal Kriging, 46

p-Wasserstein distance, 75
penalization factor, 56
penalized regression, 50
penalty, 56
penalty factor, 50
periodogram, 18
Polyak-Ruppert averaging, 81
polynomial spline, 49
primary function, 4

quadratically constrained quadratic problem,
62

radial functions, 52
random field, 2

Boolean, 4
Gaussian, 5
Ornstein-Uhlenbeck, 5
subgaussian, 13

random surfaces, 1
range dependence, 4
response, 46
Rosenblatt dependence rate, 16

second order cone programming, 62
separation pseudo-metric, 71
shift parameter, 11
short memory, 4
simplex constraint, 61
Smith random field, 9
smoothing kernel, 20
space-time continuum, 1
spatial autoregressive process, 53
spectral

measure, 11
representation, 3

stability index, 11
stable

α, 11
random vector, 11

stationary, 2
Gaussian fields, 5
in the strict sense, 13

step length factor, 81
stereology, 1
stochastic subgradient descent method, 80
Subgaussian, 28
symmetric distribution, 12

tail dependence function, 7, 8
target, 46

linear part, 47
non-linear additive part, 47
regression error, 47

Tensor product bases, 47
tick function, 57
time line, 1
truncated power series, 49

unit simplex Sn, 7
universal Kriging

variance, 45
universality constraints, 43

variogram, 3
volume, 14

Weibull distribution, 7
Whittle-Matern-type

covariance function, 42
family of variogram models, 42

Wiener process, two-sided, 6
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